Бісектриса рівнобічної трапеції, проведена з вершини тупого кута, паралельна бічній стороні. обчисліть основи трапеції, якщо її периметр дорівнює 60 см, а бічна сторона — 14 см.
1)Второй признак равенства треугольников. Теорема. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. Третий признак равенства треугольников.
2)периметр - это сумма длин сторон какой-либо геометрической фигуры. Полупериметр - половина периметра.
3)Два треугольника, которые можно совместить наложением, называются равными. ... Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
4)Высотой треугольника, опущенной из данной вершины, называется перпендикуляр, проведённый из этой вершины к прямой, которая содержит противоположную сторону треугольника. * Прямые, содержащие высоты треугольника, пересекаются в одной точке (которая называется ортоцентром данного треугольника).
ответ А решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
1)Второй признак равенства треугольников. Теорема. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. Третий признак равенства треугольников.
2)периметр - это сумма длин сторон какой-либо геометрической фигуры. Полупериметр - половина периметра.
3)Два треугольника, которые можно совместить наложением, называются равными. ... Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
4)Высотой треугольника, опущенной из данной вершины, называется перпендикуляр, проведённый из этой вершины к прямой, которая содержит противоположную сторону треугольника. * Прямые, содержащие высоты треугольника, пересекаются в одной точке (которая называется ортоцентром данного треугольника).
Объяснение:
решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3