Дано: ABCD — параллелограмм,AF — биссектриса ∠BAD,F ∈ BC.Доказать: ∆ ABF — равнобедренный.Доказательство:1) ∠BAF=∠DAF (так как AF — биссектриса ∠BAD по условию).2) ∠BFA=∠DAF (как внутренние накрест лежащие углы при BC ∥ AD м секущей AF).3) Следовательно, ∠BAF=∠BFA.4) Следовательно, треугольник ABF — равнобедренный
с основанием AF (попризнаку).5) Следовательно, AB=BF.Что и требовалось доказать.Дано: ABCD — параллелограмм,AF — биссектриса ∠BAD,F ∈ BC.Доказать: ∆ ABF — равнобедренный.Доказательство:1) ∠BAF=∠DAF (так как AF — биссектриса ∠BAD по условию).2) ∠BFA=∠DAF (как внутренние накрест лежащие углы при BC ∥ AD м секущей AF).
В "классическом" определении вероятность равна отношению числа подходящих событий к общему числу возможный событий. Всего возможный событий 8. Это легко сосчитать. Первая монета может упасть двумя орел или решка), и на каждый их них вторая может упасть тоже двумя Всего для двух монет получается 4 события (можно и перечислить - "орел, орел", "орел, решка", "решка, орел", "решка, решка"). Теперь понятно, что на каждое такое событие ТРЕТЬЯ монета может упасть опять-таки двумя Откуда и получается 8 разных вариантов выпадения трех монет. А подходящим является только 1 событие - все три монеты упали кверху решкой. Поэтому классическая вероятность такого события равна 1/8.
Интересно вот что. Этот ответ правильный, если монеты РАЗЛИЧНЫ или бросаются ПОСЛЕДОВАТЕЛЬНО. Если все три монеты абсолютно неразличимы и бросаются одновременно, вероятность может оказаться другой :). В самом деле, в этом случае есть следующие возможные события - "3 орла" "2 орла, 1 решка" "2 решки, 1 орел", "3 решки". Однако эти события неравноправны. Так что ...:)
с основанием AF (попризнаку).5) Следовательно, AB=BF.Что и требовалось доказать.Дано: ABCD — параллелограмм,AF — биссектриса ∠BAD,F ∈ BC.Доказать: ∆ ABF — равнобедренный.Доказательство:1) ∠BAF=∠DAF (так как AF — биссектриса ∠BAD по условию).2) ∠BFA=∠DAF (как внутренние накрест лежащие углы при BC ∥ AD м секущей AF).
Это легко сосчитать.
Первая монета может упасть двумя орел или решка), и на каждый их них вторая может упасть тоже двумя Всего для двух монет получается 4 события (можно и перечислить - "орел, орел", "орел, решка", "решка, орел", "решка, решка").
Теперь понятно, что на каждое такое событие ТРЕТЬЯ монета может упасть опять-таки двумя Откуда и получается 8 разных вариантов выпадения трех монет.
А подходящим является только 1 событие - все три монеты упали кверху решкой.
Поэтому классическая вероятность такого события равна 1/8.
Интересно вот что. Этот ответ правильный, если монеты РАЗЛИЧНЫ или бросаются ПОСЛЕДОВАТЕЛЬНО. Если все три монеты абсолютно неразличимы и бросаются одновременно, вероятность может оказаться другой :). В самом деле, в этом случае есть следующие возможные события - "3 орла" "2 орла, 1 решка" "2 решки, 1 орел", "3 решки". Однако эти события неравноправны. Так что ...:)