Внешний угол треугольника равен сумме двух других углов, не смежных с ним. А угол, смежный с внешним углом, находится по формуле: 180-градусная мера внешнего угла. Отсюда угол, смежный с внешним углом, равен 180-40=140 градусов. А так как этот угол лежит напротив основания равнобедренного треугольника, а сумма углов, находящихся при основании этого самого треугольника, равна 40-ка градусам. То сами оставшиеся углы равны 40:2=20 градусов. ответ: Тупой угол с градусной мерой в 140 градусов и два равных угла по 20 градусов.
∠XMA=2∠XCA (внешний угол равен сумме внутренних, не смежных с ним)
∠XMA=∠CAB=54 (накрест лежащие при XM||AB)
∠XCA=∠XMA/2 =54/2 =27
Или проведем биссектрису MD угла XMA. Биссектрисы внутренних углов при параллельных перпендикулярны, MD⊥AX. Биссектриса MD является высотой, следовательно и медианой. MD - средняя линия в треугольнике CAX, MD||CX. ∠XCA=∠DMA как соответственные. ∠XMA=∠CAB как накрест лежащие при XM||AB. ∠XCA=∠XMA/2=∠CAB/2=27
Отсюда угол, смежный с внешним углом, равен 180-40=140 градусов.
А так как этот угол лежит напротив основания равнобедренного треугольника, а сумма углов, находящихся при основании этого самого треугольника, равна 40-ка градусам. То сами оставшиеся углы равны 40:2=20 градусов.
ответ: Тупой угол с градусной мерой в 140 градусов и два равных угла по 20 градусов.
∠YAC - внешний угол, M - середина AC
∠YAX=∠MAX (AX - биссектриса ∠YAC)
∠YAX=∠MXA (накрест лежащие при XM||AB)
∠MAX=∠MXA => △XMA - равнобедренный, XM=MA
XM=MC, △XMC - равнобедренный => ∠XCA=∠MXC
∠XMA=2∠XCA (внешний угол равен сумме внутренних, не смежных с ним)
∠XMA=∠CAB=54 (накрест лежащие при XM||AB)
∠XCA=∠XMA/2 =54/2 =27
Или проведем биссектрису MD угла XMA. Биссектрисы внутренних углов при параллельных перпендикулярны, MD⊥AX. Биссектриса MD является высотой, следовательно и медианой. MD - средняя линия в треугольнике CAX, MD||CX. ∠XCA=∠DMA как соответственные. ∠XMA=∠CAB как накрест лежащие при XM||AB. ∠XCA=∠XMA/2=∠CAB/2=27