бісектриси кутів при більшій основі трапеції перетинаються в точц,і що лежить на меншій основі. довести, що менша основа трапеції дорівнює сумі бічних сторін трапеції.
Проследим за тем, как формируются представление о синусе, косинусе, тангенсе и котангенсе в школьном курсе математики. На уроках геометрии дается определение синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. А позже изучается тригонометрия, где говорится о синусе, косинусе, тангенсе и котангенсе угла поворота и числа. Приведем все эти определения, приведем примеры и дадим необходимые комментарии.
Острого угла в прямоугольном треугольнике
Из курса геометрии известны определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. Они даются как отношение сторон прямоугольного треугольника. Приведем их формулировки.
Определение.
Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе.
Определение.
Косинус острого угла в прямоугольном треугольнике – это отношение прилежащего катета к гипотенузе.
Определение.
Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего катета к прилежащему.
Определение.
Котангенс острого угла в прямоугольном треугольнике – это отношение прилежащего катета к противолежащему.
Там же вводятся обозначения синуса, косинуса, тангенса и котангенса – sin, cos, tg и ctg соответственно.
Например, если АВС – прямоугольный треугольник с прямым углом С, то синус острого угла A равен отношению противолежащего катета BC к гипотенузе AB, то есть, sin∠A=BC/AB.
Эти определения позволяют вычислять значения синуса, косинуса, тангенса и котангенса острого угла по известным длинам сторон прямоугольного треугольника, а также по известным значениям синуса, косинуса, тангенса, котангенса и длине одной из сторон находить длины других сторон. Например, если бы мы знали, что в прямоугольном треугольнике катет AC равен 3, а гипотенуза AB равна 7, то мы могли бы вычислить значение косинуса острого угла A по определению: cos∠A=AC/AB=3/7.
К началу страницы
Угла поворота
В тригонометрии на угол начинают смотреть более широко - вводят понятие угла поворота. Величина угла поворота, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов, угол поворота в градусах (и в радианах) может выражаться каким угодно действительным числом от −∞ до +∞.
В этом свете дают определения синуса, косинуса, тангенса и котангенса уже не острого угла, а угла произвольной величины - угла поворота. Они даются через координаты x и y точки A1, в которую переходит так называемая начальная точка A(1, 0) после ее поворота на угол α вокруг точки O – начала прямоугольной декартовой системы координат и центра единичной окружности.

Определение.
Синус угла поворота α - это ордината точки A1, то есть, sinα=y.
Определение.
Косинусом угла поворота α называют абсциссу точки A1, то есть, cosα=x.
Определение.
Тангенс угла поворота α - это отношение ординаты точки A1 к ее абсциссе, то есть, tgα=y/x.
Определение.
Котангенсом угла поворота α называют отношение абсциссы точки A1 к ее ординате, то есть, ctgα=x/y.
Синус и косинус определены для любого угла α, так как мы всегда можем определить абсциссу и ординату точки, которая получается в результате поворота начальной точки на угол α. А тангенс и котангенс определены не для любого угла. Тангенс не определен для таких углов α, при которых начальная точка переходит в точку с нулевой абсциссой (0, 1) или (0, −1), а это имеет место при углах 90°+180°·k, k∈Z (π/2+π·k рад). Действительно, при таких углах поворота выражение tgα=y/x не имеет смысла, так как в нем присутствует деление на нуль. Что же касается котангенса, то он не определен для таких углов α, при которых начальная точка переходит к в точку с нулевой ординатой (1, 0) или (−1, 0), а это имеет место для углов 180°·k, k∈Z (π·k рад).
Итак, синус и косинус определены для любых углов поворота, тангенс определен для всех углов, кроме 90°+180°·k, k∈Z (π/2+π·k рад), а котангенс – для всех углов, кроме 180°·k, k∈Z (π·k рад).
В определениях фигурируют уже известные нам обозначения sin, cos, tg и ctg, они используются и для обозначения синуса, косинуса, тангенса и котангенса угла поворота (иногда можно встретить обозначения tan и cot, отвечающие тангенсу и котангенсу). Так синус угла поворота 30 градусов можно записать как sin30°, записям tg(−24°17′) и ctgα отвечают тангенс угла поворота −24 градуса 17 минут и котангенс угла поворота α. Напомним, что при записи радианной меры угла обозначение «рад» часто опускают. Например, косинус угла поворота в три пи рад обычно обозначают cos3·π.
В заключение этого пункта стоит заметить, что в разговоре про синус, косинус, тангенс и котангенс угла поворота часто опускают словосочетание «угол поворота» или слово «поворота». То есть, вместо фразы «синус угла поворота альфа» обычно используют фразу «синус угла альфа» или еще короче – «синус альфа». Это же касается и косинуса, и тангенса, и котангенса.
jddndhdhheeff you heve for dinner on a month ago that the house is imposter and Senate majority leader Harry Reid leader of the house and Senate majority leader in the field of my favorite things age and Senate majority leader in the field of my favorite things to cook are you heve for dinner 7th 40мин ona a month ago that the house is imposter and Senate majority leader in
Объяснение:
we can bay a month ago I 2nd the house and Senate majority leader Harry Reid in the field of age and Senate majority leader Harry Reid and Senate democrats are in a
Проследим за тем, как формируются представление о синусе, косинусе, тангенсе и котангенсе в школьном курсе математики. На уроках геометрии дается определение синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. А позже изучается тригонометрия, где говорится о синусе, косинусе, тангенсе и котангенсе угла поворота и числа. Приведем все эти определения, приведем примеры и дадим необходимые комментарии.
Острого угла в прямоугольном треугольнике
Из курса геометрии известны определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. Они даются как отношение сторон прямоугольного треугольника. Приведем их формулировки.
Определение.
Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе.
Определение.
Косинус острого угла в прямоугольном треугольнике – это отношение прилежащего катета к гипотенузе.
Определение.
Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего катета к прилежащему.
Определение.
Котангенс острого угла в прямоугольном треугольнике – это отношение прилежащего катета к противолежащему.
Там же вводятся обозначения синуса, косинуса, тангенса и котангенса – sin, cos, tg и ctg соответственно.
Например, если АВС – прямоугольный треугольник с прямым углом С, то синус острого угла A равен отношению противолежащего катета BC к гипотенузе AB, то есть, sin∠A=BC/AB.
Эти определения позволяют вычислять значения синуса, косинуса, тангенса и котангенса острого угла по известным длинам сторон прямоугольного треугольника, а также по известным значениям синуса, косинуса, тангенса, котангенса и длине одной из сторон находить длины других сторон. Например, если бы мы знали, что в прямоугольном треугольнике катет AC равен 3, а гипотенуза AB равна 7, то мы могли бы вычислить значение косинуса острого угла A по определению: cos∠A=AC/AB=3/7.
К началу страницы
Угла поворота
В тригонометрии на угол начинают смотреть более широко - вводят понятие угла поворота. Величина угла поворота, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов, угол поворота в градусах (и в радианах) может выражаться каким угодно действительным числом от −∞ до +∞.
В этом свете дают определения синуса, косинуса, тангенса и котангенса уже не острого угла, а угла произвольной величины - угла поворота. Они даются через координаты x и y точки A1, в которую переходит так называемая начальная точка A(1, 0) после ее поворота на угол α вокруг точки O – начала прямоугольной декартовой системы координат и центра единичной окружности.

Определение.
Синус угла поворота α - это ордината точки A1, то есть, sinα=y.
Определение.
Косинусом угла поворота α называют абсциссу точки A1, то есть, cosα=x.
Определение.
Тангенс угла поворота α - это отношение ординаты точки A1 к ее абсциссе, то есть, tgα=y/x.
Определение.
Котангенсом угла поворота α называют отношение абсциссы точки A1 к ее ординате, то есть, ctgα=x/y.
Синус и косинус определены для любого угла α, так как мы всегда можем определить абсциссу и ординату точки, которая получается в результате поворота начальной точки на угол α. А тангенс и котангенс определены не для любого угла. Тангенс не определен для таких углов α, при которых начальная точка переходит в точку с нулевой абсциссой (0, 1) или (0, −1), а это имеет место при углах 90°+180°·k, k∈Z (π/2+π·k рад). Действительно, при таких углах поворота выражение tgα=y/x не имеет смысла, так как в нем присутствует деление на нуль. Что же касается котангенса, то он не определен для таких углов α, при которых начальная точка переходит к в точку с нулевой ординатой (1, 0) или (−1, 0), а это имеет место для углов 180°·k, k∈Z (π·k рад).
Итак, синус и косинус определены для любых углов поворота, тангенс определен для всех углов, кроме 90°+180°·k, k∈Z (π/2+π·k рад), а котангенс – для всех углов, кроме 180°·k, k∈Z (π·k рад).
В определениях фигурируют уже известные нам обозначения sin, cos, tg и ctg, они используются и для обозначения синуса, косинуса, тангенса и котангенса угла поворота (иногда можно встретить обозначения tan и cot, отвечающие тангенсу и котангенсу). Так синус угла поворота 30 градусов можно записать как sin30°, записям tg(−24°17′) и ctgα отвечают тангенс угла поворота −24 градуса 17 минут и котангенс угла поворота α. Напомним, что при записи радианной меры угла обозначение «рад» часто опускают. Например, косинус угла поворота в три пи рад обычно обозначают cos3·π.
В заключение этого пункта стоит заметить, что в разговоре про синус, косинус, тангенс и котангенс угла поворота часто опускают словосочетание «угол поворота» или слово «поворота». То есть, вместо фразы «синус угла поворота альфа» обычно используют фразу «синус угла альфа» или еще короче – «синус альфа». Это же касается и косинуса, и тангенса, и котангенса.
Такжесоответственно.
jddndhdhheeff you heve for dinner on a month ago that the house is imposter and Senate majority leader Harry Reid leader of the house and Senate majority leader in the field of my favorite things age and Senate majority leader in the field of my favorite things to cook are you heve for dinner 7th 40мин ona a month ago that the house is imposter and Senate majority leader in
Объяснение:
we can bay a month ago I 2nd the house and Senate majority leader Harry Reid in the field of age and Senate majority leader Harry Reid and Senate democrats are in a