Окружность проходит через вершины A и C треугольника ABC и пересекает стороны AB и BC в точках K и P соответственно. Отрезки AP и KC пересекаются в точке F . Найдите радиус окружности, если угол ABC равен 7°, угол AKC меньше угла AFC на 23°, AC =12. Решение. Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами. (теорема) ∠ АВС= (γ-β):2⇒ 2∠ АВС= γ-β γ-β=14º γ=14º+β Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами. ( теорема) ∠AFC= (γ+β):2 ∠ АКС - вписанный и равен половине величины дуги γ, на которую опирается. ∠AKC=γ:2 ∠AFC- ∠AKC=23º (γ+β):2 - γ:2=23º β/2=23º ⇒ β=2*23º=46º Так как γ=14º+β то γ=14º+46º=60º ∠AKC=60º:2=30º Треугольник АКС -вписанный. По т.синусов 2R=AC:sin∠ АКС 2R=12:0,5 2R≈24 R≈12
Если К лежит на стороне АВ, а Р лежит на стороное СД, то угол АВС=углу КВС (это один и тот же угол)Также угол ВСД=углу ВСР, т.к. это одни и те же углы.Биссектрисы и тех и тех углов пересекаются в одной и той же точке, иначе сказать, они (биссектрисы) совпадают. Следовательно М1 наложится на М2. Или М1М2=0 Вариант2:если К лежит на продолжении отрезка АВ, а точка Р лежит на продолжении отрезка ДС.угол АВС+угол ВСД=180 градусов угол М1ВС+угол ВСМ1=180-90=90 градусв. Треугольник ВСМ1 прямоугольный! (угол ВМ1С прямой)Так же докажем, что угол ВМ2С прямой.Следовательно угол М2ВМ1 и угол М2СМ1 тоже прямые. У прямоугольника диагонали равны, значит М1М2=ВС. т.к. это диагональ прямоугольника ВМ2СМ1. ответ: М1М2=ВС=6см
Отрезки AP и KC пересекаются в точке F . Найдите радиус окружности, если угол ABC равен 7°, угол AKC меньше угла AFC на 23°, AC =12.
Решение.
Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами. (теорема)
∠ АВС= (γ-β):2⇒ 2∠ АВС= γ-β
γ-β=14º
γ=14º+β Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами. ( теорема)
∠AFC= (γ+β):2
∠ АКС - вписанный и равен половине величины дуги γ, на которую опирается.
∠AKC=γ:2
∠AFC- ∠AKC=23º
(γ+β):2 - γ:2=23º
β/2=23º ⇒ β=2*23º=46º
Так как γ=14º+β то
γ=14º+46º=60º
∠AKC=60º:2=30º
Треугольник АКС -вписанный. По т.синусов
2R=AC:sin∠ АКС
2R=12:0,5
2R≈24
R≈12
угол М1ВС+угол ВСМ1=180-90=90 градусв. Треугольник ВСМ1 прямоугольный! (угол ВМ1С прямой)Так же докажем, что угол ВМ2С прямой.Следовательно угол М2ВМ1 и угол М2СМ1 тоже прямые. У прямоугольника диагонали равны, значит М1М2=ВС. т.к. это диагональ прямоугольника ВМ2СМ1. ответ: М1М2=ВС=6см