B треугольнике MNK MN= NK = 15 см, MK = 18 см. На стороне MN отмечена точка А, а на стороне NK - точка В так, что MА: АВ: BK = 5:3:5.Найдите длину отрезка АВ.
Расстоянием от точки до прямой называет длина перпендикуляра, проведённого из этой точки на прямую. Поэтому надо найти длину перпендикуляра. Пусть длина перпендикуляра равна x, тогда длина наклонной равна y. Составим систему уравнений, учитывая, что x + y = 17, а y - x = 1
x + y = 17 2y = 18 y = 9
y - x = 1 y - x = 1 x = 8
Длина перпендикуляра равна 8, поэтому и искомое расстояние тоже равно 8.
Из условия: 1) основание - квадрат 2) проекция стороны на основание -прямоугольный треугольник 3) в разрезе пирамиды по углам и вершине тоже треугольник
решение: треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60° проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов ) это и будет ответом - (4/ tg60°) / sin 45°
Расстоянием от точки до прямой называет длина перпендикуляра, проведённого из этой точки на прямую. Поэтому надо найти длину перпендикуляра. Пусть длина перпендикуляра равна x, тогда длина наклонной равна y. Составим систему уравнений, учитывая, что x + y = 17, а y - x = 1
x + y = 17 2y = 18 y = 9
y - x = 1 y - x = 1 x = 8
Длина перпендикуляра равна 8, поэтому и искомое расстояние тоже равно 8.
1) основание - квадрат
2) проекция стороны на основание -прямоугольный треугольник
3) в разрезе пирамиды по углам и вершине тоже треугольник
решение:
треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60°
проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов )
это и будет ответом - (4/ tg60°) / sin 45°