Пусть заданы отрезки: АС - сторона треугольника, АК и СМ - его высоты.. Требуется построить треугольник по данным элементам. • 1) На произвольной прямой откладываем отрезок АС, равный данной стороне. • 2) По известному методу деления отрезка пополам находим середину О отрезка АС и из О радиусом, равным АО, чертится окружность. • 3) Из А на построенной окружности отмечаем циркулем точку К ( длина АК равна длине одной из данных высот). Из точки С таким же образом на окружности отмечаем основание М второй высоты. • 4) Из точки А через М проводим прямую, из точки С через К проводим вторую прямую. Точку пересечения этих прямых обозначим В. Треугольник по стороне АС и высотам АК и СМ построен: Длина АС задана условием. Углы АКС и СМА прямые - опираются на АС как на диаметр окружности. Следовательно, АК - высота к ВС, СМ - высота к АВ.
В параллелограмме противоположные стороны равны и противоположные углы равны: AB = CD, BC = AD, \angle ABC = \angle
ADC,\angle BAD = \angle BCD.
Диагонали параллелограмма точкой пересечения делятся пополам: AO
= OC, OB = OD.
Углы, прилежащие к любой стороне, в сумме равны 180^\circ .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: AC^2 + BD^2 = 2AB^2 + 2BC^2 .
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника K,\;L,\;M,\;N являются вершинами параллелограмма Вариньона.
Пусть заданы отрезки: АС - сторона треугольника, АК и СМ - его высоты.. Требуется построить треугольник по данным элементам. • 1) На произвольной прямой откладываем отрезок АС, равный данной стороне. • 2) По известному методу деления отрезка пополам находим середину О отрезка АС и из О радиусом, равным АО, чертится окружность. • 3) Из А на построенной окружности отмечаем циркулем точку К ( длина АК равна длине одной из данных высот). Из точки С таким же образом на окружности отмечаем основание М второй высоты. • 4) Из точки А через М проводим прямую, из точки С через К проводим вторую прямую. Точку пересечения этих прямых обозначим В. Треугольник по стороне АС и высотам АК и СМ построен: Длина АС задана условием. Углы АКС и СМА прямые - опираются на АС как на диаметр окружности. Следовательно, АК - высота к ВС, СМ - высота к АВ.
Теоремы (свойства параллелограмма):
В параллелограмме противоположные стороны равны и противоположные углы равны: AB = CD, BC = AD, \angle ABC = \angle
ADC,\angle BAD = \angle BCD.
Диагонали параллелограмма точкой пересечения делятся пополам: AO
= OC, OB = OD.
Углы, прилежащие к любой стороне, в сумме равны 180^\circ .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: AC^2 + BD^2 = 2AB^2 + 2BC^2 .
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника K,\;L,\;M,\;N являются вершинами параллелограмма Вариньона.