Плоскость АВ1С пересекает куб по линиям АВ1 и В1С. Расстояние до этой плоскости от точки С1 (перпендикуляр С1Н к этой плоскости) равно расстоянию до этой плоскости от точки О (перпендикуляр ОР к этой плоскости), так как прямая, на которой лежат точки О и С1 параллельна плоскости АВ1С, поскольку эта прямая параллельна линии АС пересечения куба плоскостью АВ1С. Найдем ОР. По Пифагору отрезок В1D1 = √2 - это диагональ квадрата А1В1С1В1. Тогда ОВ1= √2/2, так как диагонали квадрата в точке пересечения делятся пополам. В прямоугольном треугольнике ВВ1О Отрезок ОР является высотой, опущенной из прямого угла О на гипотенузу В1Q и по свойству этой высоты OP=(ОВ1*ОQ)/В1Q. По Пифагору из треугольника ВВ1Q: В1Q= √(BQ²+ВВ1²)=√(3/2) = √3/√2. Тогда ОР=(√2/2)*1/(√3/√2) = (√2/2)*1*(√2/√3) = 2/(2√3) = 1/√3 = √3/3. ответ: расстояние от С1 до плоскости АВ1С равно √3/3.
ОД = Н/tg 60° = 10√3 / √3 = 10.
ОД (по свойству медиан) = (1/3) СД =(1/3)*а*cos 30° = (1/3)*a *(√3/2) = a√3/6. Отсюда а (сторона основания пирамиды) равно: а = 6*ОД/√3 = 6*10/√3 = 60/√3 = 20√3.
Периметр основания Р = 3а = 3*20√3 = 60√3.
Апофема SД = Н/sin 60° = 10√3/(√3/2) = 20 = А.
Площадь боковой поверхности:
Sбок = (1/2)Р*А = (1/2)*60√3*20 = 600√3.
Площадь основания:
Sо = а²√3/4 = (20√3)²*√3/4 = 300√3.
Площадь полной поверхности:
S = Sо + Sбок = 300√3 + 600√3 = 900√3.
Объём пирамиды V = (1/3)Sо*H = (1/3)*(300√3)*(10√3) =
= 3000.
Найдем ОР.
По Пифагору отрезок В1D1 = √2 - это диагональ квадрата А1В1С1В1.
Тогда ОВ1= √2/2, так как диагонали квадрата в точке пересечения делятся пополам.
В прямоугольном треугольнике ВВ1О Отрезок ОР является высотой, опущенной из прямого угла О на гипотенузу В1Q и по свойству этой высоты OP=(ОВ1*ОQ)/В1Q. По Пифагору из треугольника ВВ1Q: В1Q= √(BQ²+ВВ1²)=√(3/2) = √3/√2.
Тогда ОР=(√2/2)*1/(√3/√2) = (√2/2)*1*(√2/√3) = 2/(2√3) = 1/√3 = √3/3.
ответ: расстояние от С1 до плоскости АВ1С равно √3/3.