Площадь равна S=r*a+r*(b+c)=b*c*sin(A)/2 По теорем косинусов а*a=b*b+c*c-2bc*cos(A) Есть два уравнения и два неизвестных. Перепишем теорему косинусов так а*а=(b+c)^2-2bc(cos(A)+1) (b+c)=bc*sin(A)/2r-a
ПОПРОБУЕМ:
а*а=(b+c)^2-2bc(cos(A)+1) (b+c)=bc*sin(A)/2r-a (b+c)=x bc=(xr+ar)/sinA a*a=x*x-2*(xr+ar)*(cosA+1)/sinA a*a=x*x-2(x+a)r*ctg(A/2) x*x-2x *ctgA/2r=a*a+2a*r*ctgA/2 (x-ctg(A/2)*r)^2=a*a+2a*r*ctgA/2+(ctg(A/2)*r)^2 (x-ctg(A/2)*r)^2=(a+ctg(A/2)*r)^2 x=a+2r*ctg(A/2) (b+c)= a+2r*ctg(A/2) (вот это, наверное, ввиду простоты выражения , можно было бы и из каких-то иных геометрических соображений получить) (b-c)^2= b*b-2bc+c*c= (a+2r*ctg(A/2))^2-4(xr+ar)/sinA (b-c)=sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))
Конечно, когда решали квадратное уравнение, могли и другие корни посмотреть Получили бы еще и симметричное решение. b и c равноправны и их можно поменять местами. Извините , за некрасивый ответ. Надеюсь, правильный.
Стороны основания прямого параллелепипеда равны 2 см и 2√3 см, а один из углов основания равен 30 °. Площадь диагонального сечения параллелепипеда, который проходит через меньшую диагональ основания, равен 8 см². Найдите площадь полной поверхности параллелепипеда.
По теорем косинусов а*a=b*b+c*c-2bc*cos(A)
Есть два уравнения и два неизвестных.
Перепишем теорему косинусов так
а*а=(b+c)^2-2bc(cos(A)+1)
(b+c)=bc*sin(A)/2r-a
ПОПРОБУЕМ:
а*а=(b+c)^2-2bc(cos(A)+1)
(b+c)=bc*sin(A)/2r-a
(b+c)=x
bc=(xr+ar)/sinA
a*a=x*x-2*(xr+ar)*(cosA+1)/sinA
a*a=x*x-2(x+a)r*ctg(A/2)
x*x-2x *ctgA/2r=a*a+2a*r*ctgA/2
(x-ctg(A/2)*r)^2=a*a+2a*r*ctgA/2+(ctg(A/2)*r)^2
(x-ctg(A/2)*r)^2=(a+ctg(A/2)*r)^2
x=a+2r*ctg(A/2)
(b+c)= a+2r*ctg(A/2)
(вот это, наверное, ввиду простоты выражения , можно было бы и из каких-то иных геометрических соображений получить)
(b-c)^2= b*b-2bc+c*c= (a+2r*ctg(A/2))^2-4(xr+ar)/sinA
(b-c)=sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))
b= (a+2r*ctg(A/2) )/2+ sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))/2
c=(a+2r*ctg(A/2) )/2- sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))/2
Конечно, когда решали квадратное уравнение, могли и другие корни посмотреть
Получили бы еще и симметричное решение. b и c равноправны и их можно поменять местами.
Извините , за некрасивый ответ. Надеюсь, правильный.
Правильное условие задания:
Стороны основания прямого параллелепипеда равны 2 см и 2√3 см, а один из углов основания равен 30 °. Площадь диагонального сечения параллелепипеда, который проходит через меньшую диагональ основания, равен 8 см². Найдите площадь полной поверхности параллелепипеда.
В ΔABD применим теорему косинусов:
BD² = AB² + AD² - 2•AB•AD•cos∠BAD
BD² = 2² + (2√3)² - 2•2•2√3•cos30° = 4 + 12 - 8√3•(√3/2) = 16 - 12 = 4
BD² = 4 ⇒ BD = 2 см
Площадь диагонального сечения: S (bb₁d₁d) = 8 см²
BB₁D₁D - прямоугольник ⇒ S = BD • B₁B = 2 • B₁B = 8 ⇒ B₁B = 4 см
Площадь полной поверхности параллелепипеда:
S (полн.) = 2•S (осн.) + S (бок.) = 2 • S (осн.) + P (осн.) • H = 2•(AB•AD•sin30°) + 2•(AB + AD)•B₁B = 2•(2•2√3•sin30°) + 2•(2 + 2√3)•4 = 4√3 + 16 + 16√3 = 20√3 + 16 cм²
ответ: 20√3 + 16 см²