1)
Зная, что сумма углов в треугольнике равна 180°, найдем ∠В.
∠В=180-∠А-∠С=180-60-80=40°.
∠С=80°, CD-биссектриса ∠С, значит ∠DCВ=40°.
В ΔСDВ ∠DCВ=∠DBC=40° ⇒ΔСDВ-равнобедренный, DB=CD=6см.
2)
Дано:
ΔABC - прямоугольный
∠В = 90°
Катет АВ = 8
Гипотенуза АС = 16
Вh - высота
Если катет равен половине гипотенузы, значит этот катет (АВ) лежит против угла в 30° ⇒ ∠С = 30°
Рассмотрим ΔВhC: ∠h = 90° ; ∠C = 30°;
⇒ ∠hBC = 180° - 90° - 30° = 60°
⇒ ∠ABh = 90° - 60° = 30° (нашли исходя из условия, что ∠В = 90°
ответ: 60° и 30° - углы, образованные между высотой и катетами.
Вектор а пропорционален вектору, полученному векторным умножением векторов b и c.
Находим d = b x c по Саррюса:
i j k| i j
-4 -7 5| -4 -7
-8 -8 7| -8 -8 = -49i - 40j + 32k + 28j + 40i - 56k = -9i - 12j - 24k.
Получили вектор d, кратный вектору а:
d = (-9; -12; -24). его модуль равен:
|d| = √((-9)² + (-12)² + (-24)²) = √(81 + 144 + 576) = √801.
Подкоренное выражение кратно заданному 801/89 = 9.
То есть модуль а в 3 раза меньше.
Но ортогональным вектор а может иметь как в одном направлении, так и в противоположном.
Поэтому имеются 2 решения:
a = (-3; -4; -8),
(3; 4; 8).
1)
Зная, что сумма углов в треугольнике равна 180°, найдем ∠В.
∠В=180-∠А-∠С=180-60-80=40°.
∠С=80°, CD-биссектриса ∠С, значит ∠DCВ=40°.
В ΔСDВ ∠DCВ=∠DBC=40° ⇒ΔСDВ-равнобедренный, DB=CD=6см.
2)
Дано:
ΔABC - прямоугольный
∠В = 90°
Катет АВ = 8
Гипотенуза АС = 16
Вh - высота
Если катет равен половине гипотенузы, значит этот катет (АВ) лежит против угла в 30° ⇒ ∠С = 30°
Рассмотрим ΔВhC: ∠h = 90° ; ∠C = 30°;
⇒ ∠hBC = 180° - 90° - 30° = 60°
⇒ ∠ABh = 90° - 60° = 30° (нашли исходя из условия, что ∠В = 90°
ответ: 60° и 30° - углы, образованные между высотой и катетами.
Вектор а пропорционален вектору, полученному векторным умножением векторов b и c.
Находим d = b x c по Саррюса:
i j k| i j
-4 -7 5| -4 -7
-8 -8 7| -8 -8 = -49i - 40j + 32k + 28j + 40i - 56k = -9i - 12j - 24k.
Получили вектор d, кратный вектору а:
d = (-9; -12; -24). его модуль равен:
|d| = √((-9)² + (-12)² + (-24)²) = √(81 + 144 + 576) = √801.
Подкоренное выражение кратно заданному 801/89 = 9.
То есть модуль а в 3 раза меньше.
Но ортогональным вектор а может иметь как в одном направлении, так и в противоположном.
Поэтому имеются 2 решения:
a = (-3; -4; -8),
(3; 4; 8).