3. Рассмотрим прямоугольный треугольник CC1L. Угол CC1L равен углу B1BC, который в свою очередь равен 60° по условию. Следовательно, угол C1CL=30°. По теореме о катете напротив угла в 30° гипотенуза CC1=2⋅LC1=2⋅4=8.
СD1 - диагональ грани DCC1D1 куба. АС лежит в плоскости грани АВСD и является ее диагональю. DС1 не лежит в той же плоскости и пересекает ее в точке, не принадлежащей АС. Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещиваются. ⇒ прямые DC1 и AC - скрещивающиеся. Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным. Проведем в грани АВВ1А1 диагональ АВ1||DC1 и в грани ВСС1В1 диагональ СВ1 Все грани куба квадраты и равны между собой. АС=АВ1=СВ1 как диагонали равных квадратов. Треугольник АСВ1 - равносторонний, и углы между его сторонами равны 60º⇒ Угол между ДС1 и АС=углу между АВ1 и АС и равен 60º
1. В основании – прямоугольник, поэтому треугольник ABD – прямоугольный. По теореме Пифагора находится его гипотенуза.
BD−→−=AB2+AD2−−−−−−−−−−√=62+82−−−−−−√=10
2. Достроим четырехугольник KPRM, где P и R – середины BB1 и DD1 соответственно.
По признаку параллелограмма все четыре получившихся четырехугольника ABPK,BCMP,CMRD и AKRD – параллелограммы.
Следовательно, KPRM – тоже параллелограмм, причем равный основаниям параллелепипеда. А значит, и прямоугольник.
Диагонали прямоугольника KM=PR=BD= равны. Следовательно, KM−→−=10
3. Рассмотрим прямоугольный треугольник CC1L. Угол CC1L равен углу B1BC, который в свою очередь равен 60° по условию. Следовательно, угол C1CL=30°. По теореме о катете напротив угла в 30° гипотенуза CC1=2⋅LC1=2⋅4=8.
И CC1−→−=8
4. Рассмотрим треугольник B1CC1.
Его уголCC1B1=60° , его стороны CC1 и B1C1
Объяснение:
АС лежит в плоскости грани АВСD и является ее диагональю.
DС1 не лежит в той же плоскости и пересекает ее в точке, не принадлежащей АС. Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещиваются. ⇒
прямые DC1 и AC - скрещивающиеся.
Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным. Проведем в грани АВВ1А1 диагональ АВ1||DC1 и в грани ВСС1В1 диагональ СВ1 Все грани куба квадраты и равны между собой.
АС=АВ1=СВ1 как диагонали равных квадратов.
Треугольник АСВ1 - равносторонний, и углы между его сторонами равны 60º⇒
Угол между ДС1 и АС=углу между АВ1 и АС и равен 60º