Задача 1. Дан равносторонний треугольник АВС, в который вписан круг. Один из отрезков, на которые делит точка касания вписанной окружности на сторону треугольника равна 5 см. Найдите периметр треугольника.
Задача 2. Гипотенуза прямоугольного треугольника равна 20 см. Найдите длину круга, описанного вокруг этого треугольника.
Объяснение:
Задача 1.
В ΔАВС-равносторонний вписана окружность , Р∈АВ, К∈ВС,М∈АС, Р,М,К-точки касания.АР=5см.
По свойству отрезков касательных и учитывая , что АВ=ВС=СА получаем :
АР=РВ=ВК=КС=СМ=МА=5 см. Значит сторона треугольника 10 см.
Р=3*АВ=30 (см).
Задача 2.
Центр описанной окружности лежит на середине гипотенузы⇒R=10 см. Длина окружности С=2ПR, С=2П*10=20П (см)≈62,8 (см)
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Задача 1. Дан равносторонний треугольник АВС, в который вписан круг. Один из отрезков, на которые делит точка касания вписанной окружности на сторону треугольника равна 5 см. Найдите периметр треугольника.
Задача 2. Гипотенуза прямоугольного треугольника равна 20 см. Найдите длину круга, описанного вокруг этого треугольника.
Объяснение:
Задача 1.
В ΔАВС-равносторонний вписана окружность , Р∈АВ, К∈ВС,М∈АС, Р,М,К-точки касания.АР=5см.
По свойству отрезков касательных и учитывая , что АВ=ВС=СА получаем :
АР=РВ=ВК=КС=СМ=МА=5 см. Значит сторона треугольника 10 см.
Р=3*АВ=30 (см).
Задача 2.
Центр описанной окружности лежит на середине гипотенузы⇒R=10 см. Длина окружности С=2ПR, С=2П*10=20П (см)≈62,8 (см)
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.