50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?
50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?
ответ:1056+1584√3 (см²)
Объяснение: 1)Пусть параллелограмм АВСД-нижнее основание призмы,А₁В₁С₁Д₁-верхнее основание; ∠А=30°, тогда ∠Д=180°-30°=150°. 2)Боковая поверхность призмы S= P·h, P= 2·(АД+СД)= 2( 16+24√3)=32+48√3. 3)Вычислим большую диагональ основания АС по теореме косинусов из ΔАДС: АС²= АД²+СД²- 2·АС·СД·CosД= 16²+(24√3)² - 2·16·24√3·Cos150°= 256+1728 - 2·16·24√3· (-Cos30°)=256+1728 + 2·16·24√3· √3/2 =256+1728 +1152=3136, ⇒АС = √3136= 56. 4)Рассмотрим прямоугольный треугольник АА₁С, по условию большая диагональ призмы А₁С=65 см.⇒h²= AA₁²= А₁С²- AC²65²-56²= 1089, h=√1089=33 (cм) 5) Боковая поверхность призмы S= P·h =(32+48√3) P= 2·(АД+СД)= 2( 16+24√3)=(32+48√3)· 33 =1056+1584√3 (см²)