Билет №1 по геометрии.
1)Точки.Прямые.Отрезки.
2)Сформулировать, и доказать теорему, выражающию 3 признак равенства треугольников.
3)Задача. Внутри равнобедреного треугольника ABC с основанием BC взята точка M такая что угол MBC равен 30 угол MCB Равен 10.
Найти угол AMC, если угол BAC равен 80.
Радиус вписанной в треугольник окружности вычисляют по формуле:
r= √(р-а)(р-b)(р-с):р
Необходимо найти а, b, c
DA1=DC1=А1С1, так как Δ DA1C1 образован диагоналями равных граней куба, и потому является равносторонним.
Для нахождения радиуса окружности, вписанной в равносторонний треугольник, есть отдельная формула, которая вытекает из данной выше:
r=а:2√3
В данной формуле а - диагональ грани данного куба.
Каждая грань куба - квадрат. Диагональ квадрата
d=a√2
Подставим значение диагонали в формулу радиуса
r=(a√2):2√3 =4√2:2√3 =2√2:√3
r= (2√2·√3):√3·√3=(2√3*√2):3=⅓·2√6 см
r=⅓·2√6 см
Раз прямоугольный, да еще и равнобедренный, то два катета равны по х см, а гипотенуза 12см. Тогда по теореме ПИфагора 2х²=12², или х²=12*6, откуда х=√72=6√2/см/
Площадь треугольника равна половине произведения его катетов, т.е. (1/2)*6√2*6√2=36/см²/, но с другой стороны, эта же площадь находится как произведение полупериметра треугольника на радиус окружности, вписанной в этот треугольник, т.е. полупериметр, равный (12+2*6√2)/2=6+6√2 надо умножить на искомый радиус и получим 36.
откуда радиус равен 36/(6+6√2)=36/(6*(1+√2))=6/(1+√2)=6(√2-1), а площадь круга равна Пи эр в квадрате. то есть Пи*(6(√2-1)²)=36*(3-2*√2)
ответ. 36(3-2√2)
2.Радиус окружности ищем по формуле площадь треугольника деленная на полупериметр.
Площадь треугольника найдем по формуле Герона.
Полупериметр треугольника р=
(15+15+24=)/2=27
27-15=12; 27-15=12; 27-24=3; значит, площадь равна корню квадратному из произведения, равного 12*12*3*27; 12*9=108, Площадь 12*9/27=4, деленная на полупериметр - это радиус. Значит, радиус равен 4 см. Тогда длина окружности равна два пи эр, т.е. 8 ПИ, а площадь круга пи эр в квадрате, т.е. 16 Пи.