Билет 41. какой угол называется развёрнутым? 2. теорема о накрест лежащих углах образованных при пересеченпараллельных прямых прямых третьей.двух3 пересекаются ли на рисунке отрекки eh и ab, eh и вс нк и ав 4. в равнобедренном треугольнике mnk с основанием мк длина ero медианы npравен 6 см. периметр треугольника mnp равен 24 см. найдите периметртреугольника mnk
По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника.
Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC =>
∠ECM = ∠MCD = ∠EDH = ∠HDC
Тогда ΔHDC = ΔMCD по стороне и двум углам:
(CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC)
Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC =>
эти треугольники равны по стороне и двум углам
Пусть дана равнобокая трапеция ABCD, у котрой MN - средняя линия, АС и BD - диагонали, являющиеся биссектрисами острых углов. Пусть средняя линия пересекает диагональ АС в точке К и МК=8 см, KN=12 см. МК является средней линией треугольника АВС, то по свойству средней линии треугольника ВС=2*МК=16 см. KN является средней линией треугольника BCD, то по тому же свойству AD=2*KN=24см. Треугольник АВС равнобедренный, т. к. угол ВАС равен углу DAC, т.к. Ас - биссектриса угла А, а угол DAC= углу ВСА как внутренние накрест лежащие при ВСIIAD и секущей АС, следует угол ВАС= углу АСВ и АВ=ВС=16 см, а т.к. данная трапеция равнобокая, то CD тоже = 16 см.З=3*16+24=72 см
ответ: 72 см