Билет 6.1. укажите номера верных утверждений1) центры вписанной и описанной окружностей правильного тре-угольника не .2) длина окружности равна произведению числа пна диаметр.3) квадрат касательной, проведённой к окружности из данной точки,равен произведению всей секущей, проведённой из этой же точки, на еевнешнюю часть.4) диагонали прямоугольника равны.5) углы, прилежащие к одной стороне параллелограмма, равны 90°.
ответ: 676π.
Объяснение:
Сечение шара - круг. Площадь круга: S = πr².
S₁ = πr₁² = 25π ⇒ r₁ = 5
S₂ = πr₂² = 144π ⇒ r₂ = 12
Отрезок, соединяющий центр шара с центром сечения, перпендикулярен сечению.
Обозначим ОС = х, тогда OS = 17 - х.
Из прямоугольных треугольников ОСА и OSB выразим радиус шара по теореме Пифагора:
R² = (17 - x)² + r₁² = (17 - x)² + 25
R² = x² + r₂² = x² + 144
(17 - x)² + 25 = x² + 144
289 - 34x + x² + 25 = x² + 144
34x = 170
x = 5
R = √(x² + 144) = √(25 + 144) = √169 = 13
Sпов. шара = 4πR² = 4 · π · 169 = 676π
2Проведем в плоскости α две пересекающиеся прямые a и b, а через точку А проведем прямые a1 и b1, соответственно параллельные прямым а и b. Рассмотрим плоскость β, проходящую через прямые a1 и b1. Плоскость β — искомая, так как она проходит через точку A и по признаку параллельности двух плоскостей параллельна плоскости α.Докажем теперь, что β — единственная плоскость, проходящая через точку А и параллельная плоскости &alpha. В самом деле, любая другая плоскость, проходящая через точку А, пересекает плоскость β, поэтому пересекает и параллельную ей плоскость a