2 Периметр десятого четырехугольника равен 1,1 (1,125). Наблюдается геометрическая прогрессия, уменьшения площадей четырехугольников: площадь третьего меньше первого в 2 раза, 5-того в 2 раза меньше 3-го и т.д., аналогично и с четными четырехугольниками: Площадь четвертого меньше второго в 2 раза. Находим 5 четный член прогрессии по формуле (это и есть площадь 10 четырехугольника) b5=b1/gСтепень(5-1); Периметр b1 вычисляем начертив второй четырехугольник P=18см. Р=18/2 в степень(5-1)=18/16=1,125 см 1 Периметр первого равен 26 см Найдем периметр 9-того четырехугольника, это пятый в геометрической последовательности нечетных четырехугольников: Р=26/2 в степени(5-1). Р26/16=1.6 см
АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1