Рассмотрим ΔАВD. Он - прямоугольный, так как ВD⊥АВ⇒∠DВА=90°. Найдем ∠АDВ по теореме о сумме ∠Δ: ∠АDВ=180°-60°-90°=30° Рассмотрим ∠ВDА и ∠DВС, учитывая, что ВС∫∫АD(по определению трапеции): эти углы накрест лежащие при парал. прям. и сек. ⇒ они равны(по св-ву парал. прям) ⇒ ∠АDВ=∠СВD=30°. При этом, ВD - так же биссектриса ∠D⇒∠АDВ=∠ВDС=30° ⇒ ∠D=60° ⇒ АВСD - равнобедренная трапеция(по признаку) Найдем ∠DСВ. Рассмотрим ΔВСD: ∠В=∠D=30 ⇒ найдем ∠С по теореме о сумме ∠Δ: 180°-60°=120° ∠DCВ=∠АВС(по опр. равноб. трап.) ⇒ АВС=120° ответ: 60°, 60°, 120°, 120°
Находим градусные меры дуг окружности:
360⁰:20=18⁰
бОльшая дуга=18*11=198⁰
меньшая дуга=18*9=162⁰
Известно, что вписанный угол окружности равен половине градусной меры дуги, на которую он опирается. Используя это свойство находим углы ΔМКР:
Во первых сразу можно сказать, что угол МКР- прямой, как опирающийся на диаметр:
угол МКР=180:2=90⁰
Угол МРК опирается на меньшую из двух дуг, угол МРК=162:2=81⁰
Дуга РК=180-162=18⁰, угол КМР=18:2=9⁰
Или можно найти угол КМР как 180-(90+81)=9⁰
ответ: угол МКР=90⁰
угол МРК=81⁰
угол КМР=9⁰
Ну и, как "Лучшее решение" не забывай отмечать, ОК?!... ;)
∠АDВ=180°-60°-90°=30°
Рассмотрим ∠ВDА и ∠DВС, учитывая, что ВС∫∫АD(по определению трапеции): эти углы накрест лежащие при парал. прям. и сек. ⇒ они равны(по св-ву парал. прям) ⇒ ∠АDВ=∠СВD=30°.
При этом, ВD - так же биссектриса ∠D⇒∠АDВ=∠ВDС=30° ⇒ ∠D=60°
⇒ АВСD - равнобедренная трапеция(по признаку)
Найдем ∠DСВ. Рассмотрим ΔВСD: ∠В=∠D=30 ⇒ найдем ∠С по теореме о сумме ∠Δ: 180°-60°=120°
∠DCВ=∠АВС(по опр. равноб. трап.) ⇒ АВС=120°
ответ: 60°, 60°, 120°, 120°