Биссектриса одной стороны треугольника разделяет стену. Определите тип треугольника,
А) Прямоугольный.
Б) разные стены,
В) Равносторонний.
D) Невозможно определить
8. Периметр равностороннего треугольника 32 см, напротив основания.
Биссектриса угла образует треугольный периметр.
Разделите на два треугольника по 24 см. Длина этой биссектрисы
находить.
А) 6 см.
Б) 8 см, В) 12 см. D) 16 см,
Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.