Биссектриса треугольника делит противалежащую сторону на части, длины который равны 4 см и 6 см. Найдите длины двух других сторон, если периметр треугольника равен 50 см
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними второго треугольника, то такие треугольники равны.
Дано: ΔАВС и ΔА₁В₁С₁. АВ = А₁В₁, АС = А₁С₁, ∠А = ∠А₁. Доказать: ΔАВС = ΔА₁В₁С₁. Доказательство:
Наложим треугольники друг на друга так, чтобы угол А совпал с углом А₁. Тогда совпадут и лучи АВ с А₁В₁ и АС с А₁С₁. Так как АВ = А₁В₁, точки В и В₁ совпадут. Так как АС = А₁С₁, точки С и С₁ тоже совпадут. Через две точки можно провести единственную прямую, поэтому совпадут и отрезки ВС и В₁С₁. Так как треугольники совпали при наложении - они равны.
При доказательстве признака использована аксиома: через любые две точки можно провести единственную прямую
Искомое диагональное сечение является прямоугольником. Его площадь находится произведением длины диагонали призмы на высоту ( длину бокового ребра призмы). Ни длина диагонали, ни длина ребра пока не известны, их следует найти. Так как в основании призмы ромб с тупым углом 120°, острый угол в нем равен 180°-120°=60°, а меньшая диагональ делит ромб на два равносторонних треугольника со стороной 5 см. Итак, меньшая диагональ равна 5 см. Площадь боковой поверхности прямой призмы равна произведению периметра ее основания на высоту призмы ( длину бокового ребра) S=Ph Периметр равен 5·4 =20 см h=S:P=240:20=12 см Площадь сечения призмы, проходящего через боковое ребро и меньшую диагональ основания Sсеч=5·12=60 см ²
Дано: ΔАВС и ΔА₁В₁С₁.
АВ = А₁В₁, АС = А₁С₁, ∠А = ∠А₁.
Доказать: ΔАВС = ΔА₁В₁С₁.
Доказательство:
Наложим треугольники друг на друга так, чтобы угол А совпал с углом А₁.
Тогда совпадут и лучи АВ с А₁В₁ и АС с А₁С₁.
Так как АВ = А₁В₁, точки В и В₁ совпадут.
Так как АС = А₁С₁, точки С и С₁ тоже совпадут.
Через две точки можно провести единственную прямую, поэтому совпадут и отрезки ВС и В₁С₁.
Так как треугольники совпали при наложении - они равны.
При доказательстве признака использована аксиома: через любые две точки можно провести единственную прямую
Ни длина диагонали, ни длина ребра пока не известны, их следует найти. Так как в основании призмы ромб с тупым углом 120°, острый угол в нем равен 180°-120°=60°, а меньшая диагональ делит ромб на два равносторонних треугольника со стороной 5 см.
Итак, меньшая диагональ равна 5 см.
Площадь боковой поверхности прямой призмы равна произведению периметра ее основания на высоту призмы ( длину бокового ребра)
S=Ph Периметр равен 5·4 =20 см
h=S:P=240:20=12 см
Площадь сечения призмы, проходящего через боковое ребро и меньшую диагональ основания
Sсеч=5·12=60 см ²