Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении 7: 4 считая от вершины острого угла. найти большую сторону параллелограмма если его периметр равен 144см
п равильная четырехугольная призма - это многогранник, основания которого являются правильными четырехугольниками - квадратами, а боковые грани — равными прямоугольниками.
так как сторона квадрата ( верхнего основания призмы) противолежит углу 30 градусов, она равна половине диагонали призмы и равна 5 см. нужно теперь найти высоту призмы. для этого придется найти диагональ боковой грани из треугольника, гипотенузой в котором является диагональ призмы, а катетами сторона квадрата и диагональ боковой грани. она равна √(100 -25)= √75 =5√3теперь находим высоту призмыh² =(5√3)² -5² =√50=5√2площадь полной поверхности призмы равна площади ее четырех боковых граней плюс площадь оснований. площадь боковых граней равна4*5*5√2=100√2площадь оснований 2*5*5=50 см²
площадь полной поверхности призмы100√2 +50=50(2√2+1) см
п равильная четырехугольная призма - это многогранник, основания которого являются правильными четырехугольниками - квадратами, а боковые грани — равными прямоугольниками.
так как сторона квадрата ( верхнего основания призмы) противолежит углу 30 градусов, она равна половине диагонали призмы и равна 5 см. нужно теперь найти высоту призмы. для этого придется найти диагональ боковой грани из треугольника, гипотенузой в котором является диагональ призмы, а катетами сторона квадрата и диагональ боковой грани. она равна √(100 -25)= √75 =5√3теперь находим высоту призмыh² =(5√3)² -5² =√50=5√2площадь полной поверхности призмы равна площади ее четырех боковых граней плюс площадь оснований. площадь боковых граней равна4*5*5√2=100√2площадь оснований 2*5*5=50 см²
площадь полной поверхности призмы100√2 +50=50(2√2+1) см
Хо = (6+0)/2 = 3.
Уо = (2+3)/2 = 2,5.
2. Координаты вершины С:
Хс = 2Хо - Ха = 2*3 - 1 = 5.
Ус = 2Уо - Уа = 2*2,5 - 1 = 4.
3. Уравнения диагоналей.
А(1; 1), С(5; 4).
АС: (х - 1)/(5-1) = (у - 1)/(4 - 1).
АС: (х - 1)/4= (у - 1)/3 каноническое уравнение.
3х - 3 = 4у - 4
3х - 4у + 1 = 0 общее уравнение.
у = (3/4)х + (1/4) уравнение с коэффициентом.
В(6,2), Д(0,3).
ВД = (х - 6)/(0 - 6) = (у - 2) /( 3 - 2 )
ВД: 3 Х - 4 У + 1 = 0
у = 0,1666667 х + 3.
4. Является ли четырехугольник ABCD ромбом? Нет.
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √26 ≈ 5,099019514.
BC = √((Хc-Хв)²+(Ус-Ув)²) = √5 ≈ 2,236067977.