Равнобедренного может? Если да , то вот . В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана. Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
1) ΔABC=ΔADC, по трём сторонам => Sabcd=2*SΔabc
По формуле герона
р=(10+13+13):2=36/2=18 см
S²Δabc=p(p-10)(p-13)(p-13)
S²Δabc=18*8*5*5
SΔabc=√(18*8*5*5)=√(9*2*4*2*5*5)=3*2*2*5=60 см²
Sabcd=2*SΔabc=2*60=120 см²
2) Найдем угол при основе (в равнобедренном треугольнике углы при основе равны)
<CAB=<ACB=(180°-<ABC)/2=(180°-60°)/2=120°/2=60°
Если все углы в трегуольнике равны 60°, то это равносторонний треугольник, поэтому все стороны ΔABC равны 12 см
Формула площади равностороннего треугольника: SΔabc=(AB²√3):4=(12²√3):4=(144√3):4=36√3 см²
3) Чтобы найти площадь прямоугольника, андо знать его обе стороны
Рассмотрим прямоугольный треугольник ΔABC. По теореме Пифагора найдем один из его катетов--ВС--,который является и неизвестной стороной прямоугольника
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
1. 120 см²
2. 36√3 см²
3. 270 см²
Объяснение:
на фото рисунок и дано
1) ΔABC=ΔADC, по трём сторонам => Sabcd=2*SΔabc
По формуле герона
р=(10+13+13):2=36/2=18 см
S²Δabc=p(p-10)(p-13)(p-13)
S²Δabc=18*8*5*5
SΔabc=√(18*8*5*5)=√(9*2*4*2*5*5)=3*2*2*5=60 см²
Sabcd=2*SΔabc=2*60=120 см²
2) Найдем угол при основе (в равнобедренном треугольнике углы при основе равны)
<CAB=<ACB=(180°-<ABC)/2=(180°-60°)/2=120°/2=60°
Если все углы в трегуольнике равны 60°, то это равносторонний треугольник, поэтому все стороны ΔABC равны 12 см
Формула площади равностороннего треугольника: SΔabc=(AB²√3):4=(12²√3):4=(144√3):4=36√3 см²
3) Чтобы найти площадь прямоугольника, андо знать его обе стороны
Рассмотрим прямоугольный треугольник ΔABC. По теореме Пифагора найдем один из его катетов--ВС--,который является и неизвестной стороной прямоугольника
ВС²=АС²-АВ²=17²-8²=(17-8)(17+8)=9*25
ВС=√(9*25)=3*5=15 см
Sabcd=AB*ВС=8*15=270 см²