У равнобедренных прямоугольных треугольников острые углы равны по 45°, поэтому ∠ВАС=∠ВСА=∠САД=∠АСД=45°. У треугольников АВС и АВД острые углы по 45° и общая гипотенуза АС=6см, значит треугольники равны по 4-му признаку – гипотенузе и острому углу, тогда АВ=ВС=АД=СД. При этом АС является основанием в обоих треугольниках. Проведём высоты ВК и ДК к гипотенузе АС. Так как треугольники равнобедренные, то высота, опущенная к основанию является ещё биссектрисой и медианой. Так как треугольники равны, то их медианы также будут равны. Медиана прямоугольного треугольника, проведённая из вершины прямого угла к гипотенузе равна её половине, тогда ВК=ДК=АС÷2=6÷2=3см.
∆ВДК – прямоугольный, (по условию, так как плоскости треугольников перпендикулярны), где ВК и ДК – катеты, а ВД – гипотенуза. Найдём ВД по теореме Пифагора:
ВД²=ВК²+ДК²=3²+3²=9+9=18
ВД=√18=3√2см.
Можно найти другим . В равнобедренном прямоугольном треугольнике гипотенуза больше катета в √2 раз, тогда ВД=3√2см
Дано: ABCD - параллелограмм, ∠BAD < 90°, AH ⊥ BC, AK ⊥ CD, AB = 5,
AC = 15, AH = 3
Найти: HK - ?
Решение: Так как по условию AH ⊥ BC, то угол ∠AHC = 90°, тогда для прямоугольного треугольника ΔAHB по теореме Пифагора: . Также так как угол ∠AHC = 90°, то треугольник ΔAHC - прямоугольный. Рассмотрим прямоугольный треугольник ΔAHC. По теореме Пифагора: .
По основному свойству отрезка:
По свойствам параллелограмма (ABCD) его противоположные стороны равны, тогда AB = CD = 5, .
По формуле площади параллелограмма:
. Рассмотрим треугольник прямоугольный (так как по условию AK ⊥ CD, то угол ∠AKC = 90°) треугольник ΔAKC. По теореме Пифагора:
. По формуле площади параллелограмма:
. По свойствам параллелограмма его противоположные углы равны, тогда ∠BAD = ∠BCD, так как по условию ∠BAD < 90°, то и угол ∠BCD < 90°, следовательно
cos ∠BCD > 0. По основному тригонометрическому тождеству:
ВД=3√2см
Объяснение:
У равнобедренных прямоугольных треугольников острые углы равны по 45°, поэтому ∠ВАС=∠ВСА=∠САД=∠АСД=45°. У треугольников АВС и АВД острые углы по 45° и общая гипотенуза АС=6см, значит треугольники равны по 4-му признаку – гипотенузе и острому углу, тогда АВ=ВС=АД=СД. При этом АС является основанием в обоих треугольниках. Проведём высоты ВК и ДК к гипотенузе АС. Так как треугольники равнобедренные, то высота, опущенная к основанию является ещё биссектрисой и медианой. Так как треугольники равны, то их медианы также будут равны. Медиана прямоугольного треугольника, проведённая из вершины прямого угла к гипотенузе равна её половине, тогда ВК=ДК=АС÷2=6÷2=3см.
∆ВДК – прямоугольный, (по условию, так как плоскости треугольников перпендикулярны), где ВК и ДК – катеты, а ВД – гипотенуза. Найдём ВД по теореме Пифагора:
ВД²=ВК²+ДК²=3²+3²=9+9=18
ВД=√18=3√2см.
Можно найти другим . В равнобедренном прямоугольном треугольнике гипотенуза больше катета в √2 раз, тогда ВД=3√2см
Объяснение:
Дано: ABCD - параллелограмм, ∠BAD < 90°, AH ⊥ BC, AK ⊥ CD, AB = 5,
AC = 15, AH = 3
Найти: HK - ?
Решение: Так как по условию AH ⊥ BC, то угол ∠AHC = 90°, тогда для прямоугольного треугольника ΔAHB по теореме Пифагора: . Также так как угол ∠AHC = 90°, то треугольник ΔAHC - прямоугольный. Рассмотрим прямоугольный треугольник ΔAHC. По теореме Пифагора: .
По основному свойству отрезка:
По свойствам параллелограмма (ABCD) его противоположные стороны равны, тогда AB = CD = 5, .
По формуле площади параллелограмма:
. Рассмотрим треугольник прямоугольный (так как по условию AK ⊥ CD, то угол ∠AKC = 90°) треугольник ΔAKC. По теореме Пифагора:
. По формуле площади параллелограмма:
. По свойствам параллелограмма его противоположные углы равны, тогда ∠BAD = ∠BCD, так как по условию ∠BAD < 90°, то и угол ∠BCD < 90°, следовательно
cos ∠BCD > 0. По основному тригонометрическому тождеству:
. По теореме косинусов для треугольника ΔHCK:
.