Биссектрисы острого и прямого углов прямоугольного треугольника при пересечении образуют углы, один из которых равен 1) 115 градусов 2) 80 градусов. найти острые углы треугольника. ответ: 1) 30 и 60 градусов 2) 20 и 70 градусов
Дано: АВСD – ромб, BD пересекается с AC в точке O. Доказать: что BD перпендикулярна AC, и каждая диагональ делит соответствующие углы ромба пополам например, что угол ВАС = углу DАС. Доказательство: 1)АB = АD по определению ромба,поэтому треугольник ВАD равнобедренный; 2)так как ромб – параллелограмм, его диагональ пересекаются и делятся пополам; 3)АО – медиана равнобедренного ВАD; 4)АО – высота и биссектриса; 5)поэтому BD перпендикулярно AC и треугольник ВАС = треугольник DАС. Теорема доказана.
Расстояние от точки S до каждой из вершин правильного треугольника АВС равно 5 см,а до плоскости 3 см. Найдите высоту треугольника ----------- Соединим вершины треугольника с точкой Ѕ АЅ=ВЅ=СЅ Если расстояние от точки вне треугольника до его вершин одинаково., то одинаковы проекции наклонных отрезков, соединяющих эту точку с вершинами: значит, вокруг треугольника можно описать окружность, и основание перпендикуляра к плоскости треугольника лежит в центре этой описанной окружности. По условию расстояние до плоскости треугольника 3 см АО=R Треугольник АОЅ- египетский, и АО=4 см( проверьте по т.Пифагора). Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты. ⇒ Высота треугольника АН=4:(2/3)=6 см
-----------
Соединим вершины треугольника с точкой Ѕ
АЅ=ВЅ=СЅ
Если расстояние от точки вне треугольника до его вершин одинаково., то одинаковы проекции наклонных отрезков, соединяющих эту точку с вершинами: значит, вокруг треугольника можно описать окружность, и основание перпендикуляра к плоскости треугольника лежит в центре этой описанной окружности.
По условию расстояние до плоскости треугольника 3 см
АО=R
Треугольник АОЅ- египетский, и АО=4 см( проверьте по т.Пифагора).
Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты. ⇒
Высота треугольника АН=4:(2/3)=6 см