Центр шара лежит в точке, равноудалённой от сторон треугольника, образуя вместе с вершинами треугольника треугольную пирамиду с равными апофемами. апофемы равны, значит основание высоты пирамиды лежит в центре вписанной в основание пирамиды окружности. площадь основания можно вычислить по формуле герона: s=√(p(p-a)(p-b)(p- где р=(a+b+c)/2. подставив числовые значения a=13, b=14 и с=15 получим s=84 см. радиус вписанной окружности: r=s/p=2s/(a+b+c). r=2·84/(13+14+15)=4 см. высота пирамиды, проведённая к данному треугольнику - это расстояние от центра шара до треугольника. в прямоугольном треугольнике, образованном высотой пирамиды, апофемой и найденным радиусом, высота по теореме пифагора равна: h=√(l²-r²), где l- апофема пирамиды (равна радиусу шара). h=√(5²-4²)=3 см - это ответ.
ответ: площадь прямоугольника увеличилась в 4 раза
Объяснение:
Пусть а - ширина изначального прямоугольника, b - его длина. Тогда площадь такого прямоугольника рассчитаем по формуле: S1 = ab.
Теперь увеличим ширину прямоугольника в 2 раза, получаем 2а. Его длину увеличим в 2 раза, получим 2b. Таким образом, площадь нового прямоугольника будет: S2 = 2a * 2b = 4ab.
Чтобы узнать во сколько раз увеличилась площадь прямоугольника после увеличения его длины и ширины, разделим большую площадь на меньшую:
S1/S2 =4ab/ab = 4.
ответ: площадь прямоугольника увеличилась в 4 раза
ответ: площадь прямоугольника увеличилась в 4 раза
Объяснение:
Пусть а - ширина изначального прямоугольника, b - его длина. Тогда площадь такого прямоугольника рассчитаем по формуле: S1 = ab.
Теперь увеличим ширину прямоугольника в 2 раза, получаем 2а. Его длину увеличим в 2 раза, получим 2b. Таким образом, площадь нового прямоугольника будет: S2 = 2a * 2b = 4ab.
Чтобы узнать во сколько раз увеличилась площадь прямоугольника после увеличения его длины и ширины, разделим большую площадь на меньшую:
S1/S2 =4ab/ab = 4.
ответ: площадь прямоугольника увеличилась в 4 раза