Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Доказательство. Построим треугольник А₁В₁С₁, совместив равные стороны АС и А₁С₁ данных треугольников как на рисунке, так, чтобы вершины В и В₁ оказались по разные стороны от прямой АС.
Тогда ΔВАВ₁ равнобедренный и значит ∠1 = ∠2 как углы при основании равнобедренного треугольника,
ΔВСВ₁ равнобедренный и ∠3 = ∠4, ⇒
∠АВС = ∠АВ₁С и значит ΔАВС = ΔА₁В₁С₁ по двум сторонам и углу между ними.
Проведем радиусы ОТ, ОК и ОР в точки касания. Они перпендикулярны сторонам ΔАВС.
Рассмотрим четырехугольник АКОР:
∠Р = ∠К = 90° ⇒ ∠А + ∠О = 180°, т.к. сумма углов четырехугольника 360°.
Тогда ∠РОК = 180° - 38° = 142°. Значит, и дуга РК равна 142°, т.к. угол РОК центральный.
∠РТК - вписанный, опирается на ту же дугу, ⇒ ∠РТК = 1/2 ∠РОК = 71°.
Аналогично рассуждаем для четырехугольника СРОТ:
∠РОТ = 360° - 90° - 90° - 106° = 74° ⇒ ∠РКТ = 1/2 ·74° = 37°
В четырехугольнике ВТОК:
∠КОТ = 360° - 90° - 90° - 36° = 144° ⇒ ∠КРТ = 1/2 ·144° = 72°
ответ: 37°, 71°, 72°
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Доказательство. Построим треугольник А₁В₁С₁, совместив равные стороны АС и А₁С₁ данных треугольников как на рисунке, так, чтобы вершины В и В₁ оказались по разные стороны от прямой АС.
Тогда ΔВАВ₁ равнобедренный и значит ∠1 = ∠2 как углы при основании равнобедренного треугольника,
ΔВСВ₁ равнобедренный и ∠3 = ∠4, ⇒
∠АВС = ∠АВ₁С и значит ΔАВС = ΔА₁В₁С₁ по двум сторонам и углу между ними.