ΔABD = ΔDCA по двум сторонам и углу между ними (AB = CD, т.к. трапеция равнобедренная, AD - общая, ∠BAD = ∠CDA) ⇒ ∠CAD = ∠BDA, ⇒ ΔAOD равнобедренный. ΔAOD подобен ΔСОВ по двум углам (углы при вершине О равны как вертикальные, ∠OAD = ∠ОСВ как накрест лежащие) ⇒ ΔСОВ тоже равнобедренный. Проведем высоту трапеции КН через точку пересечения диагоналей. Тогда, ОН - высота и медиана равнобедренного прямоугольного ΔAOD, а медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине. ОН = AD/2 Аналогично, ОК - высота и медиана ΔВОС, ОК = ВС/2 КН = (AD + BC)/2 = 4 см, т.к. полусумма оснований - это средняя линия.
Стоит запомнить это свойство: в равнобедренной трапеции с перпендикулярными диагоналями высота равна средней линии.
у=ax²+bx+c
Подставим координаты каждой точки
K(0; 5) х=0 у=5 5=a·0²+b·0+c ⇒ c=5Значит у=ax²+bx+5
L(4; –3) х=4 у=-3 -3=a·4²+b·4+5 16a+4b=-8
M(–1; 2) x=-1 y=2 2=a·(-1)²+b·(-1)+5 a-b=-3
Решаем систему двух уравнений
16a+4b=-8
a-b=-3
Умножаем второе уравнение на 4
16a+4b=-8
4a-4b=-12
20a=-20
a=-1
b=a+3=-1+3=2
Уравнение параболы
у=-х²+2х+5
Выделим полный квадрат
-х²+2х+5=-(х²-2х-5)=-(х²-2х+1-1-5)=-(х-1)²+6
Координаты вершины (1;6)
∠CAD = ∠BDA, ⇒ ΔAOD равнобедренный.
ΔAOD подобен ΔСОВ по двум углам (углы при вершине О равны как вертикальные, ∠OAD = ∠ОСВ как накрест лежащие) ⇒ ΔСОВ тоже равнобедренный.
Проведем высоту трапеции КН через точку пересечения диагоналей.
Тогда, ОН - высота и медиана равнобедренного прямоугольного ΔAOD, а медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине.
ОН = AD/2
Аналогично, ОК - высота и медиана ΔВОС,
ОК = ВС/2
КН = (AD + BC)/2 = 4 см, т.к. полусумма оснований - это средняя линия.
Стоит запомнить это свойство: в равнобедренной трапеции с перпендикулярными диагоналями высота равна средней линии.