Боковая грань правильной треугольной пирамиды образует с плоскостью основания угол в 60 градусов. найдите сторону основания, если высота пирамиды равна 10√3
В правильной треугольной пирамиде основанием высоты является центр правильного треугольника.. Этот центр - пересечение высот, медиан и биссектрис треугольника. Нам дано, что боковая грань правильной треугольной пирамиды образует с плоскостью основания угол в 60 градусов. Это значит, что апофема SН (высота боковой грани) образует с плоскостью основания угол 60 градусов. В прямоугольном треугольнике ОSH: tg60=SO/OH. Отсюда ОН=SO/tg60 или ОН= 10√3/√3 =10. Этот отрезок можно найти и по Пифагору: SH²-ОН²=SO², отсюда ОН=√(300/3)=10. ОН - это 1/3 от высоты правильного треугольника (основания пирамиды), так как медианы треугольника делится точкой пересечения (центром правильного треугольника) в отношении 2:1, считая от вершины. Значит высота равна 30. Тогда сторона основания "a" найдется из формулы: h=(√3/2)*a: а=2*h/√3 или а=20√3. ответ: сторона основания равна 20√3.
Нам дано, что боковая грань правильной треугольной пирамиды образует с плоскостью основания угол в 60 градусов. Это значит, что апофема SН (высота боковой грани) образует с плоскостью основания угол 60 градусов.
В прямоугольном треугольнике ОSH: tg60=SO/OH.
Отсюда ОН=SO/tg60 или ОН= 10√3/√3 =10.
Этот отрезок можно найти и по Пифагору:
SH²-ОН²=SO², отсюда ОН=√(300/3)=10.
ОН - это 1/3 от высоты правильного треугольника (основания пирамиды), так как медианы треугольника делится точкой пересечения (центром правильного треугольника) в отношении 2:1, считая от вершины. Значит высота равна 30. Тогда сторона основания "a" найдется из формулы: h=(√3/2)*a:
а=2*h/√3 или а=20√3.
ответ: сторона основания равна 20√3.