Боковая грань правильной треугольной пирамиды SABC наклонена к плоскости основания ABC под углом α = arctg3/4. Точки M, N, K являются серединами сторон основания ABC. Треугольник MNK является нижним основанием прямой призмы. Ребра верхнего основания призмы пересекают боковые ребра пирамиды SABC, соответственно, в точках F, P и R. Площадь полной поверхности многогранника с вершинами в точках M, N, K, F, P, R равна 53√3.
Найдите сторону треугольника ABC.
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.

Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ

gidayatova2000
16.12.2013
Геометрия
5 - 9 классы
ответ дан • проверенный экспертом
На сторонах угла CAD отмечены точки В и Е так, что точка Е лежит на отрезке АС, а точка В - на отрезке AD, причем АС = AD и АВ = АЕ. Найдите величину угла CBD, если угол AED = 95 градусов.
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ, проверенный экспертом
4,1/5
124

troshkina99
середнячок
8 ответов
2.3 тыс. пользователей, получивших
1. Рассмотрим треугольники ACB, AED:
а) АС = AD
б) AE = AB
в) угол А - общий следовательно:
треуг. ACB = треуг. AED следовательно:
угол AED = углу ABC
2) угол AED = 95 градусов - по условию, следовательно угол ABC = 95 градусов.
3) углы ABC, CBD - смежные следовательно их сумма равна 180 градусам, следовательно угол CBD = 180 - 95 = 85 градусов.