Боковая сторона и основание равнобедренного треугольника относятся как 5:6. Вычислить площадь треугольника, если высота, проведённая к основанию равна 24см.
проведём диагональ ас, ттогда треугольники асд и авс равнобедренные т к по условию их боковые стороны равны.т.к угол д=39 градусам то угол сад+асд=180-39=141 градус, тогда угол асд=сад=141: 2=70,5 градусам.
рассмотрим треуг. авс:
т.к угол в равен 3 гр,то вас+вса=180-3=177 градусов,по теореме о сумме углов треуг.
т к треуг равнобедренный, то его углы при основании равны,тогда угол вас=вса=177: 2=88,5 градусов
тогда угол а равен сумме углов вас и сад т.е 88.5 градусов+70.5 градусов=159 градусов
1) Так как, по условию параллелепипед прямой, тогда боковые ребра перпендикулярны основанию ⇒ ΔАСС₁ - прямоугольный (∠АСС₁ = 90°). Тогда мы используем по теореме Пифагора:
проведём диагональ ас, ттогда треугольники асд и авс равнобедренные т к по условию их боковые стороны равны.т.к угол д=39 градусам то угол сад+асд=180-39=141 градус, тогда угол асд=сад=141: 2=70,5 градусам.
рассмотрим треуг. авс:
т.к угол в равен 3 гр,то вас+вса=180-3=177 градусов,по теореме о сумме углов треуг.
т к треуг равнобедренный, то его углы при основании равны,тогда угол вас=вса=177: 2=88,5 градусов
тогда угол а равен сумме углов вас и сад т.е 88.5 градусов+70.5 градусов=159 градусов
ответ: угол а=159 градусов
Дано:
ABCDA₁B₁C₁D₁ - прямоугольный параллелепипед
ABCD - параллелограмм
АВ = 6 м, AD = 8 м, АС = 12 м, BB₁ = CC₁ = 5 м
----------------------------------------------------------------------------
Найти:
AC₁ - ? B₁D - ?
1) Так как, по условию параллелепипед прямой, тогда боковые ребра перпендикулярны основанию ⇒ ΔАСС₁ - прямоугольный (∠АСС₁ = 90°). Тогда мы используем по теореме Пифагора:
АС₁² = АС² + СС₁² ⇒ АС₁ = √АС² + СС₁² - Теорема Пифагора
AC₁ = √(12 м)² + (5 м)² = √144 м² + 25 м² = √169 м² = 13 м
2) Так как сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон, то в основании ABCD определим длину диагонали BD:
BD² + AC² = 2×(АВ² + ВС²).
BD² + (12 м)² = 2×((6 м)² + (8 м)²)
BD² + 144 м² = 2×(36 м² + 64 м²)
BD² + 144 м² = 2×100 м²
BD² + 144 м² = 200 м²
BD² = 200 м² - 144 м² ⇒ BD² = 56 м² ⇒ BD = √56 м² ⇒ BD = √56 м
3) Из прямоугольного ΔВ₁ВD (∠B₁BD = 90°) определим, по теореме Пифагора гипотенузу B₁D:
B₁D² = BB₁² + BD² ⇒ B₁D = √BB₁² + BD² - Теорема Пифагора
B₁D = √(5 м)² + (√56 м)² = √25 м² + 56 м² = √81 м² = 9 м
ответ: AC₁ = 13 м; B₁D = 9 м
P.S. Рисунок показан внизу↓