Боковая сторона равнобедренного треуголь- ника равна 5 м. Из точки, взятой на основании этого треугольника, проведены две прямые, параллельные боковым сторонам. Найдите периметр получившегося параллелограмма (рис. 1.24 )
1)сумма углов = 360 (угол 1 + угол 2) = (угол 3 + угол 4)=360/2=180 по условию усли (угол 1)=х, то (угол 2)=3*х. Следовательно: х+3*х=180; х=4 - углы 1 и 3; 3*45=135 - углы 2 и 4.
2)Периметр=2*(a+b). По условию если сторона1=х, то сторона2=х+4. следовательно: 2*(х+х+4)=36; 2х=18; х=7 - сторона1 и сторона3; 7+4=11 - сторона2 и сторона4.
3)Т.к. в параллелограмме угол1=30, то противоположный ему угол3=30. а угол2=угол4=(360-2*30)/2=150. проведем из угла б перпендикуляр BH к СD, угол CBD=180-30-90=60. Напротив угла в 30 градусов лежит катет равный половине гипотенузы. Следовательно сторона BC=8*2=16 и сторона AD=16. Т.к. Периметр=2*(a+b)=52, то a+b=26. Следовательно стороны AB=СD=26-16=10.
1) Даны точки М(3; 5) и N(-6; -1).
Угловой коэффициент к прямой, проходящей через эти точки равен:
к = Δу/Δх = (-1-5)/(-6-3) = -6/-9 = 2/3.
Уравнение прямой будет у = (2/3)х + в.
Для определения величины в подставим в это уравнение координаты одной из точек, возьмём А.
5 = (2/3)*3 + в, отсюда в = 5 - 2 = 3.
ответ: уравнение у = (2/3)х + 3.
В общем виде 2х - 3у + 9 = 0 (после приведения к общему знаменателю).
2) Пусть точка N, лежащая на оси абсцисс
и равноудаленная от точек Р(-1; 3) и К(0; 2), имеет координаты N(x; 0).
Используем равенство расстояний точки N от P и K.
NP² = (-1 - x)² + (3 - 0)² = 1 + 2x + x² + 9 = 10 + 2x + x².
NK² = (0 - x)² + (2 - 0)² = x² + 4.
Приравняем 10 + 2x + x² = x² + 4,
2x = 4 - 10
x = -6/2 = -3.
ответ: точка N(-3; 0).
К этому решению во вложении дан поясняющий рисунок.
Из него видно, что есть второй решения задания с использованием срединного перпендикуляра к отрезку АВ.
1)сумма углов = 360
(угол 1 + угол 2) = (угол 3 + угол 4)=360/2=180
по условию усли (угол 1)=х, то (угол 2)=3*х.
Следовательно: х+3*х=180; х=4 - углы 1 и 3; 3*45=135 - углы 2 и 4.
2)Периметр=2*(a+b).
По условию если сторона1=х, то сторона2=х+4.
следовательно: 2*(х+х+4)=36; 2х=18; х=7 - сторона1 и сторона3; 7+4=11 - сторона2 и сторона4.
3)Т.к. в параллелограмме угол1=30, то противоположный ему угол3=30. а угол2=угол4=(360-2*30)/2=150.
проведем из угла б перпендикуляр BH к СD, угол CBD=180-30-90=60. Напротив угла в 30 градусов лежит катет равный половине гипотенузы.
Следовательно сторона BC=8*2=16 и сторона AD=16.
Т.к. Периметр=2*(a+b)=52, то a+b=26. Следовательно стороны AB=СD=26-16=10.