найдите отношение площадей 2 треугольников, если стороны одного равны 36см,24 см,42 см, стороны другогоотносятся как 4:6:7,а егоменьшая сторона равнв 8 см.
Найдем стороны второго треугольника:
4/6 = 8 см / х, х = 6*8:4 = 12 см; 4/7 = 8 см/ х, х = 7*8:4 = 14 см
S произвольного треугольника = 1/2 * а*h
h = 2:а * vр(р-а)(р-в)(р-с), р - полупериметр, v - это корень
найдите отношение площадей 2 треугольников, если стороны одного равны 36см,24 см,42 см, стороны другогоотносятся как 4:6:7,а егоменьшая сторона равнв 8 см.
Найдем стороны второго треугольника:
4/6 = 8 см / х, х = 6*8:4 = 12 см; 4/7 = 8 см/ х, х = 7*8:4 = 14 см
S произвольного треугольника = 1/2 * а*h
h = 2:а * vр(р-а)(р-в)(р-с), р - полупериметр, v - это корень
Площадь первого треугольника.
р = (36+24+42):2 = 51 см
h = 2:24*v51(51-24)(51-36)(51-42) = 35,9 см
S = 1/2 * 24 * 35,9 = 430,8 см^2
Площадь второго треугольника.
р = (8+12+14):2 = 17
h = 2:12*v17(17-12)(17-8)(17-14) = 7,9 см
S = 1/2 * 12*7,9 = 47,4 см^2
47,4 : 430,8 = 1 : 9
ответ: отношение площадей 2 треугольников 1 : 9.
Дано: прямі a i b; a ∩ b = A. Коло з центром в точці О.
Побудувати: на колі точки, які рівновіддалені від прямих a i b.
Побудувати.
ГМТ віддалених від двох заданих прямих, що перетинаються, де дві прями що є
бісектрисами кутів, утворених парою заданих прямих.
За властивістю: кут між бісектрисами двох прямих, що перетинаються, є прямий кут.
Тому задача побудувати бісектриси двох кутів, що утворилися при перетині двох заданих прямих.
Будуємо бісектрису кута 1.
1) Будуємо дугу з центром в точці А довільного радіуса. Це дуга перетинає сторони кута у точках В i С.
2) Будуємо дугу довільним радіусом з центром в точці В.
3) Будуємо дугу того ж радіуса з центром в точці С.
4) Ці дуги перетинаються в точці D.
5) Будуємо промінь AD, що є бісектрисою ∟1.
Так само будуємо бісектрису ∟2.
Объяснение: