Боковая сторона равнобедренного треугольника делится точкой касания вписанной окружности в отношении 5:8, считая от вершины угла при основании треугольника. найдите стороны треугольника если его периметр равен 72 см
Обозначим вершину равнобедренного треугольника с углом, равным 2а точкой А, две другие вершины, прилежащие к основанию, точками В и С. Опустим из вершины А высоту АК (она же является и биссектрисой и медианой) на основание. Центр вписанной окружности обозначим точкой О, он лежит на высоте АК. Из центра О проведем радиус ОМ, равный r и перпендикулярный боковой стороне АС. Углы ВАК и КАС равны а. Из треугольника АКС АК/АС=cos(a), АС=АК/cos(a). АК=АО+ОК. ОК=r. Из треугольника АОМ ОМ/АО=sin(a), отсюда АО=ОМ/sin(a)=r/sin(a). AK=r/sin(a)+r. Значит АС=(r/sin(a)+r)/cos(a)=r*(1/sin(a)+1)/cos(a)=r*(sin(a)+1)/(sin(a)*cos(a)=2*r*(sin(a)+1)/sin(2*a).
1) Сонаправленные (также колинеарные)
2) Противоположно направленные (также колинеарны)
3) Равные (также они соноправлены и колинеарны)
Объяснение:
• Коллинеарные векторы - это ненулевые векторы, которые лежат либо на одной прямой, либо на параллельных прямых.
• Сонаправленные векторы - это коллинеарные ненулевые векторы, которые одинаково направлены (в одну сторону).
• Противоположно направленные векторы - это коллинеарные ненулевые векторы, которые направлены в противоположную сторону.
• Равные векторы - это сонаправленные векторы, с равными длинами.
• Нулевой вектор - это вектор у которого начало и конец совпадают (он обозначается точкой).
• Неколинерные векторы - это ненулевые векторы, которые НЕ лежат на одной прямой, либо НЕ лежат на параллельных прямых.
Значит АС=(r/sin(a)+r)/cos(a)=r*(1/sin(a)+1)/cos(a)=r*(sin(a)+1)/(sin(a)*cos(a)=2*r*(sin(a)+1)/sin(2*a).