В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

Боковая сторона равнобедренного треугольника делится точкой касания вписанной окружности в отношении 5 : 2, считая от вершины угла при основании треугольника. Найдите стороны треугольника, если его периметр равен 72 см.​

Показать ответ
Ответ:
Sofya768Miller
Sofya768Miller
15.10.2020 02:44

АВ = ВС =  21 см, АС = 30 см.

Объяснение:

Отрезки касательных, проведенные из одной точки к окружности, равны (свойство). Пусть дан равнобедренный треугольние АВС с основанием АС. Точки касания вписанной окружности со сторонами АВ, ВС и АС - точки M, N и K соответственно. Тогда АМ = АК = КС = CN = 5х,

ВМ = BN = 2х. Периметр Pabc = 2·( 5x+2x+5x) = 72 см.  =>

x = 3 см. => АВ = ВС = 7х = 21 см, АС = 10х = 30 см.


Боковая сторона равнобедренного треугольника делится точкой касания вписанной окружности в отношении
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота