Боковая сторона равнобедренного треугольника делится точкой касания вписанной окружности в отношении 4:5, считая от вершины угла при основании треугольника. Найдите стороны треугольника, если его периметр равен 104 см.
Известная теорема (или утверждение): медиана в прямоугольном треугольнике, проведенная из вершины прямого угла (то есть к гипотенузе) равна половине гипотенузы. Докажите сами, мне лень здесь всё расписывать (ну или посмотрите доказательство в интернете) Тогда длина гипотенузы в два раза больше длины этой медианы, то есть c = 2*13 = 26. Кроме того, по условию один из катетов a=24. По теореме Пифагора: c^2 = a^2 + b^2; b^2 = c^2 - a^2 = (26^2) - (24^2) = (26-24)*(26+24) = 2*50 = 100, b^2 = 100; b = √100 = 10.
Прежде всего разберемся с обозначениями. Пусть катет AB=x см, тогда, исходя из данного соотношения AB/AC=3/7, AC=(7*AB)/3=(7*x)/3 см. Теперь запишем теорему Пифагора: AB²+AC²=BC², BC=√(x²+(49*x²)/9)=√((58*x²)/9) =√(58)* x / 3 см (x и 3 уже не под корнем, мы извлекли корень из x² и 9). Теперь воспользуемся следующей формулой для нахождения высоты AH=(AB*AC)/BC. AH=42, а катеты и гипотенузы мы выразили через x. Получаем: (7*x²/3)/(√(58)*x/3)=42 (заменим деление умножением, перевернув вторую дробь)→(7*x²/3)*(3/(√58)*x)=42 (3 сокращаются, x тоже)→(7*x)/(√58)=42→x=AB=6*(√58) см, отсюда AC=14*(√58) см. Запишем теорему Пифагора для треугольника AHB: AH²+HB²=AB²→42²+HB²=36*58→1764+HB²=2088→HB²=324→HB=18 см. Запишем теорему Пифагора для треугольника AHC: AH²+HC²=AC²→42²+HC²=196*58→1764+HC²=11368→HC²=9604→HC=98 см. ответ: гипотенуза делится на отрезки 18 см и 98 см.
Тогда длина гипотенузы в два раза больше длины этой медианы, то есть
c = 2*13 = 26. Кроме того, по условию один из катетов a=24.
По теореме Пифагора: c^2 = a^2 + b^2;
b^2 = c^2 - a^2 = (26^2) - (24^2) = (26-24)*(26+24) = 2*50 = 100,
b^2 = 100;
b = √100 = 10.