Задача 1. Против угла 30° (ЕВС) лежит половина гипотенузы, значит гепотенуза прямоугольного треугольника ЕВС, равна ЕВ=7*2=14. ответ ЕВ) 14.
2 Задача. Угл КРЕ=30° (180-150) , против угла в 30° лежит половина гипотенузы => РЕ=9*2=18. Угл СКЕ=30° (сумма углов 180°-90-60) , против угла в 30 градусов лежит половина гепотенузы=> СЕ 4.5 (9/2). Мы нашли РЕ=18 и СЕ=4.5, можем найти РС= РЕ-СЕ= 18-4.5=13.5.
ответ: РС=13.5. СЕ=4.5
Объяснение:
По основному свойству прямоугольного треугольника: против угла в 30° лежит половина гипотенузы.
Задача решается двумя Графически и алгебраически. приложение №1): Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см. Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см. Радиус 5/2=2,5 см.
приложение №2): Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника. Радиус описанной окружности - R=a/2sinα , где а - сторона треугольника, α - противолежащий угол. Рассматриваем треугольник НВС, где Н точка пресечения диагоналей. Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β). R=СД/2sinβ=2/sinβ; R=АВ/2sin(90-β)=3/2cosβ. Делим одно выражение на другое. 3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3 R=2/sin(atgβ)=2.499999=2.5 см.
Задача 1. Против угла 30° (ЕВС) лежит половина гипотенузы, значит гепотенуза прямоугольного треугольника ЕВС, равна ЕВ=7*2=14. ответ ЕВ) 14.
2 Задача. Угл КРЕ=30° (180-150) , против угла в 30° лежит половина гипотенузы => РЕ=9*2=18. Угл СКЕ=30° (сумма углов 180°-90-60) , против угла в 30 градусов лежит половина гепотенузы=> СЕ 4.5 (9/2). Мы нашли РЕ=18 и СЕ=4.5, можем найти РС= РЕ-СЕ= 18-4.5=13.5.
ответ: РС=13.5. СЕ=4.5
Объяснение:
По основному свойству прямоугольного треугольника: против угла в 30° лежит половина гипотенузы.
приложение №1):
Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см.
Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см.
Радиус 5/2=2,5 см.
приложение №2):
Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника.
Радиус описанной окружности -
R=a/2sinα , где а - сторона треугольника, α - противолежащий угол.
Рассматриваем треугольник НВС, где Н точка пресечения диагоналей.
Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β).
R=СД/2sinβ=2/sinβ;
R=АВ/2sin(90-β)=3/2cosβ.
Делим одно выражение на другое.
3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3
R=2/sin(atgβ)=2.499999=2.5 см.