В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Слива05
Слива05
11.08.2022 14:06 •  Геометрия

Боковая сторона равнобедренного треугольника равняется 60 см, а периметр равняется 192 см. вычислите расстояние (в см) между точками пересечения медиан и биссектрис этого треугольника.

Показать ответ
Ответ:
lolko2
lolko2
02.10.2020 17:57
Равнобедренный  ΔАВС (АВ=ВС=60), Р=192
АС=Р-АВ-ВС=192-60-60=72
Найдем длину медианы ВМ, она же является и биссектрисой и высотой:
ВМ=√(АВ²-(ВС/2)²)=√(60²-36²)=48
В точке О пересечения медианы треугольника делятся в отношении два к одному, считая от вершины:
ВО/ОМ=2/1
ВО=2ВМ/3=32
ОМ=ВМ/3=16
Каждая биссектриса треугольника делится точкой Е пересечения биссектрис в отношении суммы прилежащих сторон к противолежащей, считая от вершины:
ВЕ/ЕМ=(АВ+ВС)/АС
ВЕ/ЕМ=120/72=5/3
ВЕ=5ВМ/8=30
ЕМ=3ВМ/8=18
Расстояние ОЕ между точками пересечения:
ОЕ=ВО-ВЕ=32-30=2
ответ: 2см
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота