Заданный четырёхугольник АРТС - равнобедренная трапеция. В соответствии с заданием треугольники ВРТ и ВАС подобны с коэффициентом 1:4. Обозначим точку касания окружности с отрезком РТ как точка F, а отрезок ВР за х, боковая сторона трапеции равна 3х. Диаметр окружности и отрезок BF относятся как 1:3, поэтому BF = 18/3 = 6 см, а PF = √(х² - 36). Верхнее основание трапеции - отрезок РТ равен 2√(х² - 36), а нижнее - в 4 раза больше, то есть АС = 8√(х² - 36). По свойству вписанной окружности суммы оснований и боковых сторон равны. 3х + 3х = 2√(х² - 36) + 8√(х² - 36). 6х = 10√(х² - 36). Возведём обе части в квадрат. 64х² = 100х² - 3600. 64х² = 3600. х = √3600/√64 = 60/8= 15/2. Периметр АРТС равен (3х + 3х)*2 = 12х = 12*(15/2) = 6*15 = 90 см.
Давайте сначала рассмотрим две точки и посмотрим, при каких условиях прямая будет равноудалена от них (первый рисунок). Я утверждаю, что так будет, если или она параллельна отрезку, соединяющему эти точки, или проходит через середину этого отрезка.
Доказательство несложно: если прямая параллельна отрезку, то расстояние от неё до любой точки отрезка одинаково; в противном случае она пересекает прямую, содержащую отрезок. Но вне отрезка она пересечь не может - см. нижний рисунок, отрезки AHa, BHb не равны, поэтому она пересекает в некоторой точке C, принадлежащей отрезку (смотрим на верхний рисунок). Опустим из точек перпендикуляры на прямую. Прямая равноудалена от точек, поэтому AHa = BHb. Кроме того, равны углы ACHa и BCHb - вертикальные. Отсюда прямоугольные треугольники ACHa и BCHb равны по катету и острому углу, и AC = CB.
Теперь возвращаемся к задаче. Будем думать, что нам даны вершины треугольника ABC. Искомая прямая не может быть параллельна более, чем одной стороне треугольника, две стороны она точно пересекает в середине. Значит, это средняя линия треугольника. Легко проверить, что средняя линия удовлетворяет условию.
ответ. (Второй рисунок) Искомая прямая - средняя линия треугольника, образованного данными точками. Задача имеет три решения - по числу средних линий.
В соответствии с заданием треугольники ВРТ и ВАС подобны с коэффициентом 1:4.
Обозначим точку касания окружности с отрезком РТ как точка F, а отрезок ВР за х, боковая сторона трапеции равна 3х.
Диаметр окружности и отрезок BF относятся как 1:3, поэтому BF = 18/3 = 6 см, а PF = √(х² - 36).
Верхнее основание трапеции - отрезок РТ равен 2√(х² - 36), а нижнее - в 4 раза больше, то есть АС = 8√(х² - 36).
По свойству вписанной окружности суммы оснований и боковых сторон равны.
3х + 3х = 2√(х² - 36) + 8√(х² - 36).
6х = 10√(х² - 36). Возведём обе части в квадрат.
64х² = 100х² - 3600.
64х² = 3600.
х = √3600/√64 = 60/8= 15/2.
Периметр АРТС равен (3х + 3х)*2 = 12х = 12*(15/2) = 6*15 = 90 см.
Доказательство несложно: если прямая параллельна отрезку, то расстояние от неё до любой точки отрезка одинаково; в противном случае она пересекает прямую, содержащую отрезок. Но вне отрезка она пересечь не может - см. нижний рисунок, отрезки AHa, BHb не равны, поэтому она пересекает в некоторой точке C, принадлежащей отрезку (смотрим на верхний рисунок).
Опустим из точек перпендикуляры на прямую. Прямая равноудалена от точек, поэтому AHa = BHb. Кроме того, равны углы ACHa и BCHb - вертикальные. Отсюда прямоугольные треугольники ACHa и BCHb равны по катету и острому углу, и AC = CB.
Теперь возвращаемся к задаче. Будем думать, что нам даны вершины треугольника ABC. Искомая прямая не может быть параллельна более, чем одной стороне треугольника, две стороны она точно пересекает в середине. Значит, это средняя линия треугольника. Легко проверить, что средняя линия удовлетворяет условию.
ответ. (Второй рисунок) Искомая прямая - средняя линия треугольника, образованного данными точками. Задача имеет три решения - по числу средних линий.