Площадь круга находят по формуле S =πr² Радиус вписанного в треугольник круга можно найти по формуле r=S:p, где S- площадь треугольника, р- его полупериметр. р=(10+24+26):2=30Площадь треугольника найдем по формуле Герона:S=√{(p−a)(p−b)(p−c)}, где р- полупериметр треугольника, а, b и с - его стороны. S=√(30•20•6•4)= √(6•5•5•4•6•4)=6•5•4=120r=120:30=4 см S =16π см²Радиус найти будет проще, если заметить, что отношение сторон этого треугольника из так называемых Пифагоровых троек, а именно 10:24:26=5:12:13 Это отношение сторон прямоугольного треугольника. Тогда по формуле радиуса вписанной в прямоугольный треугольник окружности r=(a+b-c):2, где а, b - катеты, с - гипотенуза:r=(10+24-26):2=4 cм. Площадь круга, естественно. будет та же - 16π см²
S=√(30•20•6•4)= √(6•5•5•4•6•4)=6•5•4=120r=120:30=4 см S =16π см²Радиус найти будет проще, если заметить, что отношение сторон этого треугольника из так называемых Пифагоровых троек, а именно 10:24:26=5:12:13 Это отношение сторон прямоугольного треугольника. Тогда по формуле радиуса вписанной в прямоугольный треугольник окружности r=(a+b-c):2, где а, b - катеты, с - гипотенуза:r=(10+24-26):2=4 cм. Площадь круга, естественно. будет та же - 16π см²
Объяснение:
{ AM - MB = 7
{ MB = AM\2
=>
AM - (AM\2) = 7 > 2AM - AM = 14 >
AM = 7 и
MB = AM\2 = 7\2 = 3,5
11) AM =MB = AB > L A = L M = L B = 180\3 = 60 град.
AM = MB и MD _|_ AB > L AMD = L M\2 = 60\2 = 30 град. =>
DM = 2 * DE = 2 * 4 = 8
14) AKM = AEM, так как L MAK = L MAE и L AKM = L AEM =>
и L AMK = L AME => треугольники подобны по трем углам, а равны, так как гипотенуза АМ общая =>
KM = EM = 13
15) L CMB = 180 - (L C + L CBM) = 180 - (70 + 40) = 70 град.
L BMD = 180 - (L MBD + L MDB) = 180 - (40 + 90) = 50 град.
L AMD = 180 - (L CMB + L BMD) = 180 - (70 + 50) = 60 град. =>
MD = AM\2 = 14\2 = 7 Незнаю наверное правильно