Сделаем рисунок и обозначим вершины трапеции АВСD. Пусть основаниями будут ВС и АD. По условию задачи ∠А+∠С=90º Т.к. в треугольнике АВD ∠АВD+∠ВАD=90º, то ∠АВD= ∠ВСD Если в прямоугольных треугольниках равны один из острых углов, то такие треугольники подобны. Меньшая диагональ ВD является высотой трапеции - она перпендикулярна основаниям по условию. Из подобия ᐃ АВD и ᐃ ВСD АD:ВD=ВD:ВС 18:ВD=ВD:2 ВD²=36 ВD=6 Площадь трапеции равна половине произведения её высоты на сумму оснований. S=6(2+18):2=60 ( квадратных единиц измерения)
1) Высота образует прямоугольный треугольник. Так как треугольник равнобедренный и угол противолежащий основанию равен 120 градусов следовательно боковые углы буду равны по 30 градусов. Так как высота является катетом прямоугольного треугольника и лежит против угла в 30 градусов следовательно она равна одной второй гепотенузы , а гепотенузой является боковая сторона равнобедренного треугольника следовательно она равна 12х2=24см.
2)Рассмотрим треугольник СОА: в нем угол А= 60 градусов по уловию и угол СОА равен 90 градусов так как СО это перпендикуляр, следовательно угол АСО равен 30 градусов и следовательно АО равно одной второй АС и следовательно АС равно 5.4 дм или 54 см. Рассмотрим треугольник АВС: в нем угол А равен 60 градусов по условию, угол С равен 90 градусов так как треугольник прямоугольный , следовательно угол В равен 30 градусов и следовательно отрезок ОВ равен 2АС - АО и равен 8.1 дм или 81 см.
3)Так как боковая сторона в три раза больше основания следовательно она равна 3 х 2 = 6 см. Так как треугольник равнобедренный найдем периметр, он будет равен 6 + 6 + 2 = 14 см.
Сделаем рисунок и обозначим вершины трапеции АВСD.
Пусть основаниями будут ВС и АD.
По условию задачи ∠А+∠С=90º
Т.к. в треугольнике АВD ∠АВD+∠ВАD=90º, то ∠АВD= ∠ВСD
Если в прямоугольных треугольниках равны один из острых углов, то такие треугольники подобны.
Меньшая диагональ ВD является высотой трапеции - она перпендикулярна основаниям по условию.
Из подобия ᐃ АВD и ᐃ ВСD
АD:ВD=ВD:ВС
18:ВD=ВD:2
ВD²=36
ВD=6
Площадь трапеции равна половине произведения её высоты на сумму оснований.
S=6(2+18):2=60 ( квадратных единиц измерения)
1) Высота образует прямоугольный треугольник. Так как треугольник равнобедренный и угол противолежащий основанию равен 120 градусов следовательно боковые углы буду равны по 30 градусов. Так как высота является катетом прямоугольного треугольника и лежит против угла в 30 градусов следовательно она равна одной второй гепотенузы , а гепотенузой является боковая сторона равнобедренного треугольника следовательно она равна 12х2=24см.
2)Рассмотрим треугольник СОА: в нем угол А= 60 градусов по уловию и угол СОА равен 90 градусов так как СО это перпендикуляр, следовательно угол АСО равен 30 градусов и следовательно АО равно одной второй АС и следовательно АС равно 5.4 дм или 54 см. Рассмотрим треугольник АВС: в нем угол А равен 60 градусов по условию, угол С равен 90 градусов так как треугольник прямоугольный , следовательно угол В равен 30 градусов и следовательно отрезок ОВ равен 2АС - АО и равен 8.1 дм или 81 см.
3)Так как боковая сторона в три раза больше основания следовательно она равна 3 х 2 = 6 см. Так как треугольник равнобедренный найдем периметр, он будет равен 6 + 6 + 2 = 14 см.
5)Третий угол треугольника равен 180 - ( 47+31 ) = 102 градуса.
4)По теореме внешний угол равен сумме внутренних углов треугольника не смежных ему найдем второй угол. Он равен 99 - 40 = 59 градусов. Третий угол же равен 180 - ( 40 + 59 ) = 81 градус.