В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
tayteldiyev2005
tayteldiyev2005
02.07.2021 18:59 •  Геометрия

Боковое ребро и апофема правильной треугольной пирамиды соответственно равны 11 см и 7 см. вычислить площадь сечения, проходящего через боковое ребро, и высоту пирамиды

Показать ответ
Ответ:
LeylaAllesgerova
LeylaAllesgerova
24.05.2020 08:53

Искомая площадь равна половине произведения высоты пирамиды на основание треугольника со сторонами апофема, ребро, и основанием - высота треугольника в основании.
Половину стороны основания найдем по теореме Пифагора.
х= √(11²-7²)=√121-49=6√2
Cторона основания равна
2*6√2=12√2
Высота правильного треугольника h равна
h=а√3:2=12√2*√3:2=6√6

Основание высоты пирамиды находится на расстоянии 1/3 от основания апофемы, так как центр ее - на пересечении медиан ( они пересекаются в отношении 2:1 от вершины) и это расстояние равно 2√6
Найдем высоту пирамиды.
h=√49-24=√25=5
Площадь сечения
S=(5*6√6):2=15√6 см²



Боковое ребро и апофема правильной треугольной пирамиды соответственно равны 11 см и 7 см. вычислить
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота