Боковое ребро SA треугольной пирамиды SABC перпендикулярно плоскости основания АВС, где АС перпендикулярно ВС. АВ=10, АС=8, SA=16. Найти площадь полной поверхности пирамиды.
1) Чтобы вокруг четырехугольника можно было описать окружность, сумма противоположных углов должна быть равна 180 градусов.
а) Если углы последовательно равны 90,90,60,120, то противоположными будут углы 90 и 60, 90 и 120. Ни то ни другое в сумме не даёт 180, значит ответ нет.
б) То же самое. Противоположными будут углы 40 и 55, 125 и 140. Ни то ни другое в сумме не даёт 180, значит ответ нет.
2) Радиус описанной вокруг прямоугольника окружности будет равен половине диагонали r=1/2*√(8²+6²)=1/2*√(64+36)=5см
Треугольник АВС, МН-средняя линия=1/2АВ, проводим высоту СК на АВ, О-пересечение СК и МН, АВ=4х, СК=2у, площадь АВС=1/2*АВ*СК=1/2*4х*2у=4ху, треугольник АВС подобен треугольнику СМН по двум равным углам (АВ параллельна МН), угол В=уголСМН, уголА=уголСНМ как соответственные, МН=1/2АВ=4х/2=2х, в подобных треугольниках площади относятся как квадраты соответствующих сторон, АВ²/МН²=площадьАВС/площадьМСН, 16х²/4²=площадьАВС/площадьМСН,, т.е площадь АВС составляет 4 части, а площадь МСН=1 части, на долю АВМН=4-1=3 части=24, 1 часть=24/3=8=площадьМСН
Объяснение:
1) Чтобы вокруг четырехугольника можно было описать окружность, сумма противоположных углов должна быть равна 180 градусов.
а) Если углы последовательно равны 90,90,60,120, то противоположными будут углы 90 и 60, 90 и 120. Ни то ни другое в сумме не даёт 180, значит ответ нет.
б) То же самое. Противоположными будут углы 40 и 55, 125 и 140. Ни то ни другое в сумме не даёт 180, значит ответ нет.
2) Радиус описанной вокруг прямоугольника окружности будет равен половине диагонали r=1/2*√(8²+6²)=1/2*√(64+36)=5см