угол между прямой и плоскостью - это угол между прямой и проекцией этой прямой на плоскость.
Т.к. все вершины квадрата равноудалены от точки S, то расстояние от проекции этой точки до вершин квадрата, т.е. проекции наклонных тоже будут равны между собой. Значит, данная точка проектируется в точку пересечения диагоналей квадрата. зная сторону квадрата, легко найти его диагональ. она равна √((4√6)²+(4√6)²)=√(16*6*)2=
4*2√3=8√3/см/,половина этой диагонали равна 4√3
Отношение 12/(4√3)=3/√3=√3- тангенс угла наклона между прямой
SA и плоскостью квадрата. тогда сам угол равен 60°
Даны два вектора m{-1; 2} и n{4;-x}. Найдите: а) При каких значениях x прямые, содержащие данные векторы, коллинеарны?
б) При каких значениях x прямые, содержащие данные векторы, перпендикулярны?
в) При каких значениях x прямые, содержащие данные векторы, образуют тупой угол?
Решение
а) Два вектора коллинеарные ,если их координаты пропорциональны, значит для m{-1; 2} и n{4;-x} имеем -1:4=2:(-х) , х=8;
б)Вектора перпендикулярны , если их скалярное произведение равно нулю : m*n=-1*4+2*(-х) , -1*4+2*(-х) =0 , x=2;
a) Угол будет тупым , если cos(∠m;n) <0 .Косинус угла между векторами равен скалярному произведению этих векторов, деленному на произведение их длин.
Найдем длины векторов:
Длина вектора |m|=√( (-1)²+2²)=√(1 +4)=√5,
Длина вектора |n|=√( 4²+(-x)²)=√(16+x²),
Скалярное произведение m*n=-1*4+2*(-х)=-4-2x
(-4-2x)/ (√5*√(16+x²))<0/Значение дроби отрицательно , числитель и знаменатель разных знаков. Но √5*√(16+x²)>0 при х≠±4, тогда -4-2х<0 или х>2. Тогда учитывая х≠4 получаем х∈(2;4)∪(4;+∞).
угол между прямой и плоскостью - это угол между прямой и проекцией этой прямой на плоскость.
Т.к. все вершины квадрата равноудалены от точки S, то расстояние от проекции этой точки до вершин квадрата, т.е. проекции наклонных тоже будут равны между собой. Значит, данная точка проектируется в точку пересечения диагоналей квадрата. зная сторону квадрата, легко найти его диагональ. она равна √((4√6)²+(4√6)²)=√(16*6*)2=
4*2√3=8√3/см/,половина этой диагонали равна 4√3
Отношение 12/(4√3)=3/√3=√3- тангенс угла наклона между прямой
SA и плоскостью квадрата. тогда сам угол равен 60°
Даны два вектора m{-1; 2} и n{4;-x}. Найдите: а) При каких значениях x прямые, содержащие данные векторы, коллинеарны?
б) При каких значениях x прямые, содержащие данные векторы, перпендикулярны?
в) При каких значениях x прямые, содержащие данные векторы, образуют тупой угол?
Решение
а) Два вектора коллинеарные ,если их координаты пропорциональны, значит для m{-1; 2} и n{4;-x} имеем -1:4=2:(-х) , х=8;
б)Вектора перпендикулярны , если их скалярное произведение равно нулю : m*n=-1*4+2*(-х) , -1*4+2*(-х) =0 , x=2;
a) Угол будет тупым , если cos(∠m;n) <0 .Косинус угла между векторами равен скалярному произведению этих векторов, деленному на произведение их длин.
Найдем длины векторов:
Длина вектора |m|=√( (-1)²+2²)=√(1 +4)=√5,
Длина вектора |n|=√( 4²+(-x)²)=√(16+x²),
Скалярное произведение m*n=-1*4+2*(-х)=-4-2x
(-4-2x)/ (√5*√(16+x²))<0/Значение дроби отрицательно , числитель и знаменатель разных знаков. Но √5*√(16+x²)>0 при х≠±4, тогда -4-2х<0 или х>2. Тогда учитывая х≠4 получаем х∈(2;4)∪(4;+∞).