Большая сторона треугольника, вписанного в окружность, равна 6, а вершины треугольника делят окружность на три дуги, градусные меры которых относятся как 1: 4: 7. найдите неизвестные стороны и углы треугольника.
Пусть k - коэффициент пропорциональности. Тогда дуги, на которые вершины треугольника делят окружность, равны k; 4k; 7k. Т.к. градусная мера всей окружности равна 360°, то k+4k+7k=360 12k=360 k=30
Вписанный угол равен половине дуги, на которую он опирается: ∠A=30/2=15° ∠B=4*30/2=2*30=60° ∠C=7*30/2=7*15=105°
k+4k+7k=360
12k=360
k=30
Вписанный угол равен половине дуги, на которую он опирается:
∠A=30/2=15°
∠B=4*30/2=2*30=60°
∠C=7*30/2=7*15=105°
По теореме синусов:
AB/sinC=BC/sinA=AC/sinB
6/sin105°=BC/sin15°=AC/sin60°
BC≈1,6
AC≈5,4
ответ: ∠A=15°; ∠B=60°; ∠C=105°; BC=1,6; AC=5,4