Обозначим данные точки А, В и С. Эти три точки можно соединить одним единственным в фигуру из трех точек и трех отрезков. Т.е. в треугольник , для которого предлагается построить два подобных с коэффициентом подобия k=3 и k=0,5 ( См. рисунки вложения)
Продлим ВС и АС и с циркуля 3 раза отложим длину этих сторон. Получим СА1=3АС и СВ1=3ВС. Угол А1СВ1 получившегося треугольника равен углу ВСА ( вертикальные). Треугольники АВС и А1В1С подобны по пропорциональным сторонам и равному углу между ними. Аналогично строится треугольник А2СВ2, подобный треугольника АВС с k=0,5. Для этого сначала делим две стороны пополам деления отрезка пополам циркулем Вы, конечно, уже знаете).
На сторонах угла ВАС от А циркулем на АС и АВ откладываем равные отрезки АМ и АК. Соединим М и К. На произвольной прямой отмечаем т.А1 и чертим окружность радиусом, равным АК. Точку пересечения с взятой прямой отмечаем К1. От К1 на окружности циркулем отмечаем точку М1 так, что К1М1=КМ. Из центра А1 окружности поводим прямую А1М1. Угол, равный углу ВАС исходного треугольника, построен. На прямых А1М1 и А1К1 откладываем стороны нужной длины: А1С1=3АС и А1В1=3 ВС и соединяем их. Аналогично для треугольника с k=0,5 откладываем половины длин сторон АС и АВ треугольника АВС и соединяем их. Стороны построенных треугольников пропорциональны сторонам исходного, а углы между ними равны углу ∆ АВС.
Пересечение двух сфер Линия пересечения двух сфер есть окружность .
Объяснение:
Пусть O1 и O2 – центры сфер и A – их точка пересечения. Проведем через точку A плоскость α, перпендикулярную прямой O1O2.
Обозначим через B точку пересечения плоскости α с прямой O1O2. По теореме сечение шара плоскостью плоскость α пересекает обе сферы по окружности K с центром B, проходящей через точку A. Таким образом, окружность K принадлежит пересечению сфер.
Докажем, что сферы не имеют других точек пересечения, кроме точек окружности K. Допустим, точка X пересечения сфер не лежит на окружности K. Проведем плоскость через точку X и прямую O1O2 . Об этом говорит сайт https://intellect.icu . Она пересечет сферы по окружностям с центрами O1 и O2. Эти окружности пересекаются в двух точках, принадлежащих окружности K, да еще в точке X. Но две окружности не могут иметь больше двух точек пересечения.
Обозначим данные точки А, В и С. Эти три точки можно соединить одним единственным в фигуру из трех точек и трех отрезков. Т.е. в треугольник , для которого предлагается построить два подобных с коэффициентом подобия k=3 и k=0,5 ( См. рисунки вложения)
Продлим ВС и АС и с циркуля 3 раза отложим длину этих сторон. Получим СА1=3АС и СВ1=3ВС. Угол А1СВ1 получившегося треугольника равен углу ВСА ( вертикальные). Треугольники АВС и А1В1С подобны по пропорциональным сторонам и равному углу между ними. Аналогично строится треугольник А2СВ2, подобный треугольника АВС с k=0,5. Для этого сначала делим две стороны пополам деления отрезка пополам циркулем Вы, конечно, уже знаете).
На сторонах угла ВАС от А циркулем на АС и АВ откладываем равные отрезки АМ и АК. Соединим М и К. На произвольной прямой отмечаем т.А1 и чертим окружность радиусом, равным АК. Точку пересечения с взятой прямой отмечаем К1. От К1 на окружности циркулем отмечаем точку М1 так, что К1М1=КМ. Из центра А1 окружности поводим прямую А1М1. Угол, равный углу ВАС исходного треугольника, построен. На прямых А1М1 и А1К1 откладываем стороны нужной длины: А1С1=3АС и А1В1=3 ВС и соединяем их. Аналогично для треугольника с k=0,5 откладываем половины длин сторон АС и АВ треугольника АВС и соединяем их. Стороны построенных треугольников пропорциональны сторонам исходного, а углы между ними равны углу ∆ АВС.
Пересечение двух сфер Линия пересечения двух сфер есть окружность .
Объяснение:
Пусть O1 и O2 – центры сфер и A – их точка пересечения. Проведем через точку A плоскость α, перпендикулярную прямой O1O2.
Обозначим через B точку пересечения плоскости α с прямой O1O2. По теореме сечение шара плоскостью плоскость α пересекает обе сферы по окружности K с центром B, проходящей через точку A. Таким образом, окружность K принадлежит пересечению сфер.
Докажем, что сферы не имеют других точек пересечения, кроме точек окружности K. Допустим, точка X пересечения сфер не лежит на окружности K. Проведем плоскость через точку X и прямую O1O2 . Об этом говорит сайт https://intellect.icu . Она пересечет сферы по окружностям с центрами O1 и O2. Эти окружности пересекаются в двух точках, принадлежащих окружности K, да еще в точке X. Но две окружности не могут иметь больше двух точек пересечения.