Свойства треугольника, изучающиеся в школе, за редким исключением, известны с античности.
Теорема Чевы была доказана в XI веке арабским учёным Юсуфом аль-Мутаманом ибн Худом, однако его доказательство было забыто. Она была доказана вновь итальянским математиком Джованни Чевой в 1678 году.
Дальнейшее изучение треугольника началось в XVII веке: была доказана теорема Дезарга (1636), открыты некоторые свойства точки Торричелли (1659). В XVIII веке была обнаружена прямая Эйлера и окружность шести точек (1765). В 1828 году была доказана теорема Фейербаха. В начале XIX века была открыта точка Жергонна.
Многие факты, связанные с треугольником, были открыты в конце XIX века. К этому времени относится творчество Эмиля Лемуана, Анри Брокара, Жозефа Нейберга, Пьера Сонда́.
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
Теорема Чевы была доказана в XI веке арабским учёным Юсуфом аль-Мутаманом ибн Худом, однако его доказательство было забыто. Она была доказана вновь итальянским математиком Джованни Чевой в 1678 году.
Дальнейшее изучение треугольника началось в XVII веке: была доказана теорема Дезарга (1636), открыты некоторые свойства точки Торричелли (1659). В XVIII веке была обнаружена прямая Эйлера и окружность шести точек (1765). В 1828 году была доказана теорема Фейербаха. В начале XIX века была открыта точка Жергонна.
Многие факты, связанные с треугольником, были открыты в конце XIX века. К этому времени относится творчество Эмиля Лемуана, Анри Брокара, Жозефа Нейберга, Пьера Сонда́.
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).