Четырехугольник, соединяющий середины сторон - параллелограмм, его стороны параллельны диагоналям и равны их половине. И его площадь равна половине площади четырехугольника. Поскольку диагонали равны, этот четырехугольник - ромб. Поэтому отрезки, соединяющие середины противоположных сторон четырехугольника, одновременно - диагонали ромба (то есть они 1) делятся пополам, как в любом параллелограмме 2) взаимно перпендикулярны, это - только в ромбе). Площадь ромба равна половине произведения диагоналей, следовательно площадь всего четырехугольника равна произведению отрезков, соединяющих противоположные стороны.
Объем такого параллелепипеда равен произведению его трех измерений. Одно из этих измерений равно 11см. Пусть оставшиеся измерения равны X и Y. Тогда периметр параллелепипеда равен 4*X+4*Y+4*11 =96см. Или X+Y=13 см. (1) Х=13-Y (2). Площадь полной поверхности параллелепипеда: S=2*(11*X)+2*(11*Y)+2*X*Y=370 см². Или 11*X+11*Y+X*Y=185 см². Или 11(X+Y)+X*Y=185 см². Подставим значение (1): 11*13+X*Y=185 => X*Y=42. Подставим значение из (2): Y²-13Y+42=0. Решаем это квадратное уравнение: Y1=(13+√(169-168)/2 = 7см. => X1=6см Y2=(13-1)/2=6см. => X2 =6см. Тогда объем параллелепипеда равен 6*7*11=462см³. ответ: V=462см³.
Поскольку диагонали равны, этот четырехугольник - ромб. Поэтому отрезки, соединяющие середины противоположных сторон четырехугольника, одновременно - диагонали ромба (то есть они 1) делятся пополам, как в любом параллелограмме 2) взаимно перпендикулярны, это - только в ромбе).
Площадь ромба равна половине произведения диагоналей, следовательно площадь всего четырехугольника равна произведению отрезков, соединяющих противоположные стороны.
Одно из этих измерений равно 11см. Пусть оставшиеся измерения равны X и Y. Тогда периметр параллелепипеда равен 4*X+4*Y+4*11 =96см. Или
X+Y=13 см. (1) Х=13-Y (2).
Площадь полной поверхности параллелепипеда:
S=2*(11*X)+2*(11*Y)+2*X*Y=370 см². Или
11*X+11*Y+X*Y=185 см². Или
11(X+Y)+X*Y=185 см². Подставим значение (1):
11*13+X*Y=185 => X*Y=42. Подставим значение из (2):
Y²-13Y+42=0. Решаем это квадратное уравнение:
Y1=(13+√(169-168)/2 = 7см. => X1=6см
Y2=(13-1)/2=6см. => X2 =6см.
Тогда объем параллелепипеда равен 6*7*11=462см³.
ответ: V=462см³.