Для начала находим уравнение прямой, проходящей через точки А и В. у=kх+C, где к=дельта у разделить на дельта х. k=(7-3)/(14-12)=2 Вычисляем C подставляя координаты первой точки и коэфициент k в уравнение. 3=2*12+C C=3-24 C=-21 Коэфициент к у нас есть, С тоже вычислили. Получаем формулу прямой, проходящей через первые две точки. у=2х-21 Проверяем первую точку 3=2*12-21 Верно Проверяем вторую точку 7=2*14-21 Верно Следовательно первые две точки действительно лежат на прямой у=2х-21. Проверяем третью точку -28=2*(-5)-21 Неверно. Следовательно третья точка не лежит на прямой, проходящей через первые две точки. .
Дано: ABCD - ромб
AB = 10
<A = 120
Найти: AC, BD = ?
Точка O - пересечение диагоналей AC и BD
Треугольник ABD - р/б (AB=AD т.к ABCD ромб) => AO - биссектриса, высота и медиана.
<BAO = 60 т.к AO - биссектриса
Треугольник ABO - прямоугольный, <ABO = 90-60 = 30
Напротив угла в 30 градусов в прямоугольном треугольнике лежит катет, равный половине гипотенузы AB => AO = 5
т.к ABCD - ромб, его диагонали делятся точкой пересечения пополам => AO=OC = 5 => AC = 2AO = 10
Треугольник ABC - равносторонний (AB=BC=AC) => <B = 60 => <OBC = 30
В треугольнике BOC - прямоугольном BC - гипотенуза = 10, катет OC = 5, найдем сторону BO по теореме Пифагора:
BO² = BC²-OC²
BO² = 10²-5²
BO² = (10-5)(10+5)
BO² = 5*15 = 75
BO = √75
BD = 2√75
BD = 2*√5*5*3
BD = 10√3
ответ: AC = 10 см; BD = 10√3 см
Объяснение:
у=kх+C, где к=дельта у разделить на дельта х. k=(7-3)/(14-12)=2
Вычисляем C подставляя координаты первой точки и коэфициент k в уравнение.
3=2*12+C
C=3-24
C=-21
Коэфициент к у нас есть, С тоже вычислили.
Получаем формулу прямой, проходящей через первые две точки.
у=2х-21
Проверяем первую точку
3=2*12-21 Верно
Проверяем вторую точку
7=2*14-21 Верно
Следовательно первые две точки действительно лежат на прямой у=2х-21.
Проверяем третью точку
-28=2*(-5)-21 Неверно.
Следовательно третья точка не лежит на прямой, проходящей через первые две точки.
.