Буду на продолжении стороны ас равностороннего треугольника авс отмечены точки т и р, причем точка с лежит между а и т, а лежит между р и с, ат=ар. точка о лежит на луче ва и ва=оа. известно, что вт=6 , вр=12. вычислите площадь треугольника орвт
Обозначим трапецию АВСD, высоту, опущенную из вершины С - СН.
. Площадь трапеции равна произведению высоты на полусумму оснований. Полусумма оснований=средняя линия трапеции.
Вспомним, что в равнобедренной трапеции высота, проведенная из тупого угла к основанию, делит его на отрезки. больший из которых равен полусумме оснований, меньший - их полуразности.⇒ АН=4. ⇒ S(ABCD)=CH•AH.Треугольник АСН - прямоугольный. По т.Пифагора СН=√(AC²-AH²)=√(6²-4²)=2√5 ⇒ S(ABCD)=2√5•4=8√5 (ед площади).
Или
Проведем из вершины С параллельно диагонали ВD прямую до пересечения с продолжением АD в точке К. Четырехугольник DBCK- параллелограмм (противолежащие стороны параллельны), DK=BC и АК=ВС+AD=2•4=8(т.к. равно двум полусуммам оснований). Тогда площадь треугольника равна АСК равна площади трапеции, её можно вычислить по ф.Герона и получить тот же результат.
по свойству смежных углов-уголBAE+уголBAC=180,следовательно 180-112= 68
значит треугольник BAC равнобедренный.AC=BC=9
2) Дано и рисунок, надеюсь, запишешь сам(а).
Доказательство:
1) угол NKP - острый => угол MKP - тупой
2) Рассмотрим треугольник MKP:
MKP - тупой угол (это мы доказали ранее)
угол KMP - острый
угол MPK - острый
из этого следует, что против большего угла лежит большая сторона (следствие)
=> КР < МР.
3)В тупоугольном равнобедр. тр-ке тупой угол - против основания. Значит основание - наибольшая сторона.х - боковая сторона, (х+17) - основание.
Периметр:
Р = 2х + (х+17) = 77
3х = 60
х = 20, х+17 = 37
ответ: 20 см; 20см; 37 см.
Обозначим трапецию АВСD, высоту, опущенную из вершины С - СН.
. Площадь трапеции равна произведению высоты на полусумму оснований. Полусумма оснований=средняя линия трапеции.
Вспомним, что в равнобедренной трапеции высота, проведенная из тупого угла к основанию, делит его на отрезки. больший из которых равен полусумме оснований, меньший - их полуразности.⇒ АН=4. ⇒ S(ABCD)=CH•AH.Треугольник АСН - прямоугольный. По т.Пифагора СН=√(AC²-AH²)=√(6²-4²)=2√5 ⇒ S(ABCD)=2√5•4=8√5 (ед площади).
Или
Проведем из вершины С параллельно диагонали ВD прямую до пересечения с продолжением АD в точке К. Четырехугольник DBCK- параллелограмм (противолежащие стороны параллельны), DK=BC и АК=ВС+AD=2•4=8(т.к. равно двум полусуммам оснований). Тогда площадь треугольника равна АСК равна площади трапеции, её можно вычислить по ф.Герона и получить тот же результат.