Дано: АВСD-параллелограмм, угол А-на 56 градусов меньше угла В Найти: A, B, C, D Решение: Пусть угол А=х градусов Тогда угол В=х+56 градусов Так как противоположные стороны параллелограмма параллельны, то можно составить уравнение. х+х+56=180 2х+56=180 х=62
Пусть мы имеем прямоугольный треугольник АВС с прямым углом А и высотой АД. Примем АД = 1, а ВС = 4. Обозначим ВД за х, а ДС за 4-х . Угол АВД равен углу ДАС как взаимно перпендикулярные. Приравняем тангенсы этих углов: 1/х =(4-х)/1. Получаем квадратное уравнение х²-4х+1=0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-4)^2-4*1*1=16-4=12;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√12-(-4))/(2*1) = (√12+4)/2=2√3/2+4/2 = 2+√3 ≈ 3.7320508;x₂=(-√12-(-4))/(2*1)=(-√12+4)/2=-2√3/2+4/2 = 2-√3 ≈ 0.2679492 этот корень равен 4-х, то есть это значение ДС.
Теперь находим углы В и С. Угол В = arc tg(1/(2+√3)) = arc tg 0.267949 = 0.261799 радиан =15°. Угол С = arc tg(1/(2-√3)) = arc tg 3.732051 = 1.308997 радиан = 75°.
Найти: A, B, C, D
Решение:
Пусть угол А=х градусов
Тогда угол В=х+56 градусов
Так как противоположные стороны параллелограмма параллельны, то можно составить уравнение.
х+х+56=180
2х+56=180
х=62
Значит, угол А=62 градуса, а угол В=118 градусов. угол С=А=62 градуса, угол D=В=118 градусов.
Обозначим ВД за х, а ДС за 4-х .
Угол АВД равен углу ДАС как взаимно перпендикулярные.
Приравняем тангенсы этих углов:
1/х =(4-х)/1.
Получаем квадратное уравнение х²-4х+1=0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-4)^2-4*1*1=16-4=12;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√12-(-4))/(2*1) = (√12+4)/2=2√3/2+4/2 = 2+√3 ≈ 3.7320508;x₂=(-√12-(-4))/(2*1)=(-√12+4)/2=-2√3/2+4/2 = 2-√3 ≈ 0.2679492 этот корень равен 4-х, то есть это значение ДС.
Теперь находим углы В и С.
Угол В = arc tg(1/(2+√3)) = arc tg 0.267949 = 0.261799 радиан =15°.
Угол С = arc tg(1/(2-√3)) = arc tg 3.732051 = 1.308997 радиан = 75°.